

Q1.

In Europe, some of the glucose from crops is fermented to produce ethanol.

Use of a carbon-neutral fuel leads to no net emissions of carbon dioxide to the atmosphere.

(a) The ethanol produced by fermentation of glucose may be regarded as a carbon-neutral fuel.

Justify this statement. Include the relevant chemical equations in your answer.

(4)

Coffee beans from South America are exported to Europe in an outer layer called silverskin.

The waste silverskin can be fermented to produce a solution containing propanone, ethanol and butan-1-ol.

(b) Suggest why ethanol produced in Europe using silverskin from South America is less likely to be carbon-neutral than ethanol produced from crops grown in Europe.

(1)

(c) **Table 1** shows the enthalpies of combustion of the three fuels from the fermentation of silverskin.

Table 1

Fuel	Standard enthalpy of combustion / kJ mol^{-1}	Energy released per mole of CO_2 produced / kJ
ethanol, $\text{C}_2\text{H}_5\text{OH}(\text{l})$	–1371	
butan-1-ol, $\text{C}_4\text{H}_9\text{OH}(\text{l})$	–2673	
propanone, $\text{C}_3\text{H}_6\text{O}(\text{l})$	–1786	

One way to measure a fuel's environmental impact is to measure the amount of energy released per mole of CO_2 produced.

Complete **Table 1**.

Use your answers to deduce the fuel with the lowest environmental impact by this measure.

(2)

(d) A student investigated the combustion of propanone ($\text{C}_3\text{H}_6\text{O}$) using calorimetry.

A copper calorimeter containing water was heated by the complete combustion of some propanone. The student did not record the final temperature of the water.

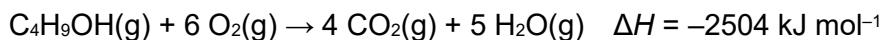
Table 2 shows the student's results.

Table 2

Mass of propanone burned / g	1.18
Mass of water / g	260
Initial temperature of water / $^{\circ}\text{C}$	22.3
Final temperature of water / $^{\circ}\text{C}$	Not recorded

Use the results in **Table 2** to calculate a value for final temperature of the water in the experiment. Assume that no heat was lost in the experiment and that the heat capacity of the calorimeter is negligible.

For propanone, enthalpy of combustion = $–1786 \text{ kJ mol}^{-1}$


For water, specific heat capacity = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$

Final temperature of water _____ $^{\circ}\text{C}$

(4)

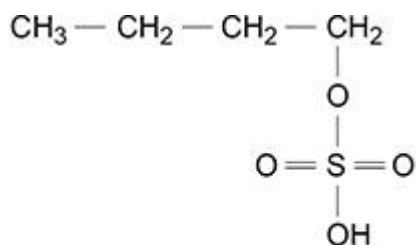
(e) Butan-1-ol can be added to petrol for cars.

An equation for the complete combustion of gaseous butan-1-ol is shown.

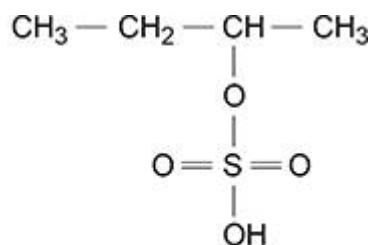
Table 3 shows some mean bond enthalpy data.

Table 3

Bond	C=O	C–H	C–O	O–H	O=O
Mean bond enthalpy / kJ mol⁻¹	805	412	360	463	496


Use these data to calculate a value for the mean C–C bond enthalpy in gaseous butan-1-ol.

C–C bond enthalpy _____ kJ mol⁻¹


(3)

Butan-1-ol can be manufactured by reacting steam with but-1-ene in the presence of the catalyst, concentrated sulfuric acid.

In the first part of this process, but-1-ene reacts with concentrated sulfuric acid to form compounds **W** and **X**.

Compound **W**

Compound **X**

Butan-1-ol is then made from compound **W**.

(f) Name and outline a mechanism to show the conversion of but-1-ene into compound **W** in the first part of this process.

Name of mechanism _____

Outline of mechanism

(5)

(g) There is a very low yield of butan-1-ol from but-1-ene in this manufacturing process.

Explain why.

(2)

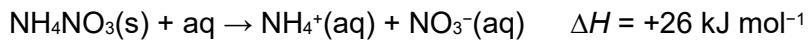
(Total 21 marks)

Q2.

A value for enthalpy of solution can be determined in two ways:

- from a cycle, using lattice enthalpy and enthalpies of hydration
- from the results of a calorimetry experiment.

(a) Define the term enthalpy of lattice dissociation.



(2)

(b) The enthalpy of solution for ammonium nitrate is the enthalpy change for the reaction shown.

Table 1

	$\text{NH}_4^+(\text{g})$	$\text{NO}_3^-(\text{g})$
Enthalpy of hydration $\Delta_{\text{hyd}}H / \text{kJ mol}^{-1}$	-307	-314

Draw a suitably labelled cycle and use it, with data from **Table 1**, to calculate the enthalpy of lattice dissociation for ammonium nitrate.

Enthalpy of lattice dissociation _____ kJ mol⁻¹

(3)

(c) A student does an experiment to determine a value for the enthalpy of solution for ammonium nitrate.

The student uses this method.

- Measure 25.0 cm³ of distilled water in a measuring cylinder.
- Pour the water into a beaker.
- Record the temperature of the water in the beaker.
- Add 4.00 g of solid NH_4NO_3 to the water in the beaker.
- Stir the solution and record the lowest temperature reached.

Table 2 shows the student's results.

Table 2

Initial temperature / °C	20.2
Lowest temperature / °C	12.2

Calculate the enthalpy of solution, in kJ mol⁻¹, for ammonium nitrate in this experiment.

Assume that the specific heat capacity of the solution, $c = 4.18 \text{ J K}^{-1} \text{ g}^{-1}$

Assume that the density of the solution = 1.00 g cm⁻³

Enthalpy of solution _____ kJ mol⁻¹

(3)

(d) The uncertainty in each of the temperature readings from the thermometer used in this experiment is $\pm 0.1^\circ\text{C}$

Calculate the percentage uncertainty in the temperature change in this experiment.

Percentage uncertainty _____

(1)

(e) Suggest a change to the student's method, using the same apparatus, that would reduce the percentage uncertainty in the temperature change.

Give a reason for your answer.

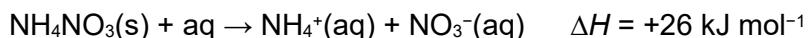
Change _____

Reason _____

(2)

(f) Another student obtained a value of $+15 \text{ kJ mol}^{-1}$ using the same method.

Suggest the main reason for the difference between this experimental value for the enthalpy of solution and the correct value of $+26 \text{ kJ mol}^{-1}$


(1)

(g) **Table 3** shows some entropy data at 298 K

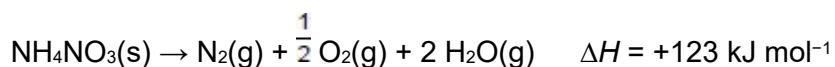
Table 3

	Entropy $S / J K^{-1} mol^{-1}$
$\text{NH}_4\text{NO}_3(\text{s})$	151
$\text{NH}_4^+(\text{aq})$	113
$\text{NO}_3^-(\text{aq})$	146

Calculate a value for the Gibbs free-energy change (ΔG), at 298 K, for the reaction when ammonium nitrate dissolves in water.

Use data from **Table 3** and the value of ΔH from the equation.

Assume for the solvent, water, that the entropy change, $\Delta S = 0$


Explain what the calculated value of ΔG indicates about the feasibility of this reaction at 298 K

$$\Delta G \text{ _____ kJ mol}^{-1}$$

Explanation _____

(4)

(h) Ammonium nitrate decomposes as shown.

The entropy change (ΔS) for this reaction is $+144 \text{ J K}^{-1} \text{ mol}^{-1}$

Calculate the temperature at which this reaction becomes feasible.

Temperature _____ K
(2)
(Total 18 marks)

Q3.

This question is about combustion.

(a) State the meaning of the term standard enthalpy of combustion.

(2)

(b) A student does an experiment to determine the enthalpy of combustion of propan-1-ol ($\text{CH}_3\text{CH}_2\text{CH}_2\text{OH}$, $M_r = 60.0$).

Combustion of 0.497 g of propan-1-ol increases the temperature of 150 g of water from 21.2 °C to 35.1 °C

Calculate a value, in kJ mol^{-1} , for the enthalpy of combustion of propan-1-ol in this experiment.

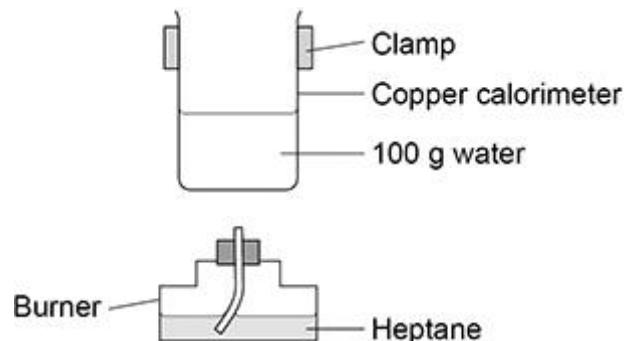
The specific heat capacity of water is $4.18 \text{ J K}^{-1} \text{ g}^{-1}$

Enthalpy of combustion _____ kJ mol^{-1}

(3)

(c) The enthalpy of combustion determined experimentally is less exothermic than that calculated using enthalpies of formation.

Give **one** possible reason for this, other than heat loss.


(1)

(Total 6 marks)

Q4.

A student does an experiment to determine a value for the enthalpy of combustion of heptane.

The figure below shows some of the apparatus used.

(a) Design a table to record all the readings necessary to determine an experimental value for the enthalpy of combustion for heptane in this experiment.

(2)

(b) The student considered using a glass beaker on a tripod and gauze instead of the clamped copper calorimeter.

Suggest **two** disadvantages of using a glass beaker on a tripod and gauze.

Disadvantage 1 _____

Disadvantage 2 _____

(2)

(c) Suggest **two** reasons why the value of enthalpy of combustion from this experiment is less exothermic than a data book value.

Reason 1 _____

Reason 2 _____

(2)

(d) Suggest **one** addition to this apparatus that would improve the accuracy of the enthalpy value obtained.

(1)

(Total 7 marks)

Q5.

This question is about enthalpy changes.

(a) State the meaning of the term enthalpy change as applied to a chemical reaction.

(1)

(b) A student determines the enthalpy change for the reaction between calcium carbonate and hydrochloric acid.

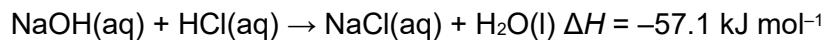
The student follows this method:

- measure out 50 cm³ of 1.00 mol dm⁻³ aqueous hydrochloric acid using a measuring cylinder and pour the acid into a 100 cm³ glass beaker
- weigh out 2.50 g of solid calcium carbonate on a watch glass and tip the solid into the acid
- stir the mixture with a thermometer
- record the maximum temperature reached.

The student uses the data to determine a value for the enthalpy change.

Explain how the experimental method and use of apparatus can be improved to provide more accurate data.

Describe how this data from the improved method can be used to determine an accurate value for the temperature change.



(6)

(c) In a different experiment 50.0 cm^3 of $0.500 \text{ mol dm}^{-3}$ aqueous hydrochloric acid are reacted with 50.0 cm^3 of $0.500 \text{ mol dm}^{-3}$ aqueous sodium hydroxide.

The initial temperature of each solution is $18.5 \text{ }^{\circ}\text{C}$

Calculate the maximum final temperature of the reaction mixture.

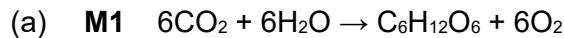
Assume that the specific heat capacity of the reaction mixture, $c = 4.18 \text{ J K}^{-1} \text{ g}^{-1}$

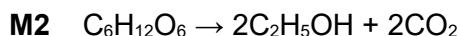
Assume that the density of the reaction mixture = 1.00 g cm^{-3}

Final temperature _____ $^{\circ}\text{C}$

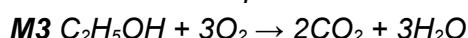
(5)

(d) Suggest how, without changing the apparatus, the experiment in part (c) could be improved to reduce the percentage uncertainty in the temperature change.





(1)


(Total 13 marks)

Q1.

1

Allow C₂H₆O for ethanol formula

1

M1/2/3 allow multiples

1

M4 explains with reference to relevant equations that formation of C₆H₁₂O₆ takes in 6CO₂ and fermentation and combustion of ethanol gives out 6CO₂*M4 depends on having appropriate equations in M1/2/3 showing 6 CO₂ in and out*

1

(b) transport (from South America to Europe) produces CO₂ / has C emissions / has larger C footprint*Process to separate ethanol from propanone and butan-1-ol produces CO₂ / has C emissions / has larger C footprint*

1

(c) **M1** 685.5 (686), 668(.25), 595(.33...) in third column of table*M1 ignore any minus sign on values*

1

M2 depends on their answer to **M1** – must be the compound giving most energy per mole of CO₂ released (correct **M1** would give ethanol)*M2 need evidence of attempt to calculate energy released per C atom (i.e. per mole of CO₂ formed)*

1

(d) **M1** amount propanone = 1.18 / 58.0 (= 0.0203 mol)

1

M2 $q = \text{M1} \times 1786 (= 36.3 \text{ kJ} = 36300 \text{ J})$

1

M3 $\Delta T (= \frac{q}{mc} = \frac{\text{M2 (in J)}}{260 \times 4.18}) = 33.4 \text{ }^\circ\text{C}$ (allow 32.8-33.4)

M3 ignore sign

1

M4 final temperature = (22.3 + **M3**) = 55.7 (°C) (allow 55-596)

M4 must show a temperature rise

1

*Correct answer scores 4 marks**Allow ECF at each stage*(e) **M1** correctly showing how many of which types of bonds are broken / made (broken) 3(C-C) + 9(C-H) + (C-O) + (O-H) + 6(O=O) (made) 8(C=O) + 10(O-H)*M1 could show broken as:*

$3(412) + (360) + (463) + 6(496)$
or $7507 + 3(\text{C-C})$

and, could show made as
8(805) + 10(463)
or 11070

1

M2 (bonds broken) – (bonds made) = -2504
7507 + 3(C-C) – 11070 = -2504
3(C-C) = 1059

Allow ECF from **M1** to **M2**

Ignore incorrect number of C-C bonds in **M1/2**, but should be 3 for **M3**

1

M3 (C-C) = $\frac{\text{M2}}{3} = 353 \text{ (kJ mol}^{-1}\text{)}$

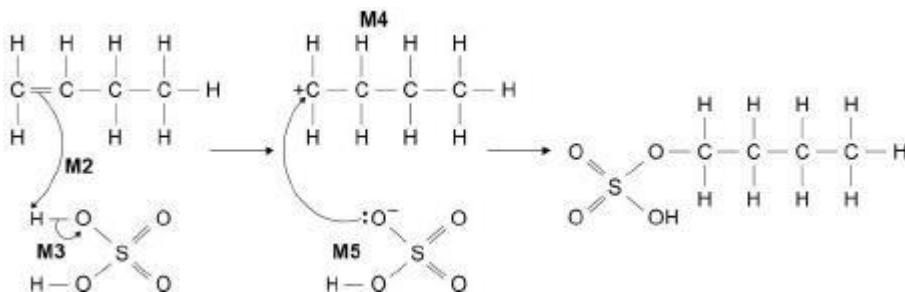
Allow ECF from **M2** to **M3** (if **M2** is negative value, then ignore sign for **M3**)

1

Correct answer scores 3 marks;

265 scores 2 marks if from 4(C-C) bonds

1188 scores 2 marks (not included -2504)


2022 scores 2 marks (using (made – broken))

-353 scores 2 marks

±834 scores 2 marks (use of C-O in CO₂)

±836 scores 1 marks (use of C-O in CO₂ and using (made – broken))

(f) **M1** electrophilic addition

1

M2 must show an arrow from the double bond towards the H atom of the H₂SO₄ molecule

M2 ignore partial negative charges on the double bond

1

M3 must show the breaking of the H-O bond in H₂SO₄

M3 penalise incorrect partial charges on the H–O bond and penalise formal charges

1

M4 is for the structure of the correct carbocation

Penalise **M4** if there is a bond drawn to the positive charge

1

M5 must show an arrow from the lone pair of electrons on the correct oxygen of HSO₄⁻ towards the positively charged atom of their carbocation drawn

1

All arrows are double-headed. Penalise one mark from the total for 2-5 if half headed arrows are used

Do not penalise the “correct” use of “sticks”

Penalise only once in any part of the mechanism for a line and two dots to show a bond

For M2 / 3, the full structure of H_2SO_4 does not need to be shown, but the key features for the mechanism should be shown and the formula must be correct. Penalise only once in M2 / 3 an incorrect but genuine attempt at the structure of sulfuric acid

Max 3 of 4 marks (M2-5) for wrong organic reactant or wrong carbocation (ignore structure of product)

If attack is shown from C=C to H^+ rather than H_2SO_4 , then allow M2 but not M3

For M5, credit attack on a partially positively charged carbocation structure, but penalise M4 for the structure of the carbocation

For M5, the full structure of HSO_4^- is not essential, but attack must come from a lone pair on an individual oxygen on HSO_4^- , but the – sign could be anywhere on the ion (eg $:OSO_3H^-$)

(g) **M1** formed from less stable carbocation

M1 must be clear that it is the stability of the carbocation that matters rather than the stability of the alcohol

1

M2 formed from primary rather than secondary carbocation

M2 allow 1 mark for primary carbocation is less stable than secondary carbocation even if not clear that product is formed from a carbocation (but must be clear that the alcohols are not the carbocations)

1

[21]

Q2.

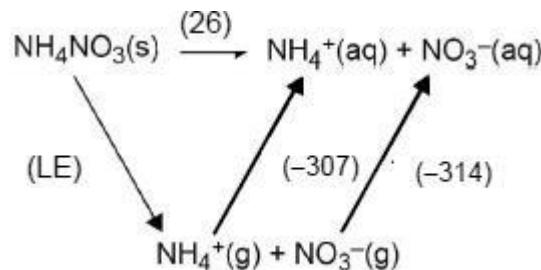
(a) The enthalpy change / ΔH when one mole of a (solid) ionic compound

Ignore standard states / conditions

Allow heat change at constant pressure when...

Ignore heat change (alone) / energy change

1


dissociates (fully) into gaseous ions

M2 Allow suitable equation with state symbols for ions

Not one mole of gaseous ions

1

(b)

Allow + water or +aq

M1 = cycle (3 ‘corners’ with formulae and state symbols and suitable arrows)

Allow equivalent Born-Haber style energy cycle

Not ecf to M2 and M3 from incorrect cycle

1

$$LE = 26 + 307 + 314$$

$$M2 = \text{working e.g. } 26 = LE - 307 - 314$$

$$= (+)647$$

1

M3 = answer (+)647 gets 3/3 if M1 given or 2/3 if not

-647 = 2/3 if M1 given or 1/3 if not

+595 / -595 = 2/3 if M1 given or 1/3 if not

-621/+621 = 1/3 if M1 given

Not ecf for M3 from incorrect expression in M2

1

(c) $(q = mc\Delta T) = 25.0 \times 4.18 \times (20.2 - 12.2) \text{ OR } 25.0 \times 4.18 \times 8$
 $(= 836 \text{ (J) or } 0.836 \text{ (kJ)})$

Not if m = 29

Ignore sign of q

1

$$4.00 \text{ g NH}_4\text{NO}_3 = 4.00/80 \text{ OR } 0.0500 \text{ mol}$$

1

$$\Delta H^{\&\text{ohbar}}_{\text{soln}} = 836/0.05 = 16720 = (+)16.7(2) \text{ kJ mol}^{-1}$$

Allow ecf from M1 and/or from M2

-16.7(2) = 2/3

+19.4 = 2/3 (using m = 29 in M1)

-19.4 = 1/3

+2.68 = 2/3

-2.68 = 1/3

+587 or +588 = 2/3

-587 or -588 = 1/3

Allow 2 sig figs or more

1

(d) $(2 \times 0.1/8) \times 100 = 2.5\%$

Allow ecf from ΔT in (c)

1

(e) use a larger mass/amount of NH_4NO_3 / solid

Marking points are independent

Allow smaller volume of water / less water

Allow use more NH_4NO_3

Not larger volume of water

Ignore higher concentration (of NH_4NO_3)

Ignore any references to changing apparatus e.g. insulation

1

so temperature change/decrease is greater

OR final temperature is lower

Allow temperature increase is greater

Not final temperature is higher

1

(f) heat gain (from the surroundings) / incomplete dissolvingg

Allow incomplete reaction

Allow thermal energy gain

Not heat loss
Ignore energy gain
Ignore references to mistakes in method

1

(g) $\Delta S = (113 + 146) - 151 = +108 \text{ (J K}^{-1} \text{ mol}^{-1}\text{)}$

1

$\Delta G = \Delta H - T\Delta S$ **OR** $26 - (298 \times 108 \times 10^{-3})$

Allow ecf $26 - (298 \times M1 \times 10^{-3})$

Allow ecf $26 - (298 \times M1)$

Allow M2 for $26000 - (298 \times 108)$

Allow M2 for $26 - (298 \times 108)$

1

$\Delta G = -6.184 / -6.18 / -6.2$

-32158 = M1 and M2

-32.2 = M1 and M2

-6184 = M1 and M2

(+)58.2 = M2 and M3 (ecf if -108 for M1)

1

negative value for ΔG indicates reaction is feasible/spontaneous

Allow positive value for ΔG indicates reaction is NOT feasible/spontaneous

Allow < 0 or > 0 as appropriate

M4 is standalone

1

(h) Converting ΔH into J **OR** ΔS into kJ

1

$(T = \Delta H/\Delta S = 123/144 \times 10^{-3} \text{ OR } 123000/144) = 854(.1666666) \text{ (K)}$

0.854 (K) = 1/2

0.001117 (K) = 1/2 (calculation upside down)

2SF minimum

1

[18]

Q3.

(a) Enthalpy change when one mole of a substance burns completely in oxygen
Allow heat energy change / allow fully combust

1

With all substances in their standard states (at stated temperature and 100kPa)

1

(b) $q = m c \Delta T = 150 \times 4.18 \times 13.9 = 8715.3 \text{ J}$

1

$n(\text{propan-1-ol}) = \frac{0.497}{60.0} = 0.00828 \text{ mol}$

1

$\Delta H = - \frac{8.7153}{0.00828} = -1050 \text{ kJ mol}^{-1}$

$M3 = - M1 \times 10^{-3} / M2$
 Minimum of 2 sf needed
 Must be negative

1

(c) Incomplete combustion

Evaporation of fuel
Experiment not completed under standard conditions

1

[6]

Q4.

(a)

	Temp/ °C		Mass /g
Initial		Burner before	
Final		Burner after	
(ΔT)		(Mass heptane burned)	

M1 for Temperature data including units
M2 for Burner mass data including units If either unit missing MAX 1

M1
M2

(b) Any two from:

Glass is a poorer conductor than copper

M1

Tripod and gauze would reduce heat transfer

Tripod and gauze would have a fixed height above the flame

Heat capacity of metal is less than glass or vice versa

M2

(c) Heat loss to surroundings or to copper/calorimeter

M1

Incomplete combustion

M2

(d) Use a wind shield (to reduce heat loss)

Allow use a lid
Insulate the sides of the calorimeter

1

[7]

Q5.

(a) Heat energy change at constant pressure

1

(b)

This question is marked using Levels of Response.		
Level 3: All stages are covered and the explanation of each stage is generally correct and virtually complete. Answer is well structured with no repetition or irrelevant points. Accurate and clear expression of ideas with no errors in use of technical terms.		5-6 marks
Level 2: All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer shows some attempt at structure. Ideas are expressed with reasonable clarity with, perhaps, some repetition or some irrelevant points. Some minor errors in use of technical terms.		3-4 marks
Level 1: Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements but these are not presented in a logical order or show some confusion. Answer may contain valid points which are not clearly linked to an argument structure. Errors in the use of technical terms.		1-2 marks
Level 0: Insufficient correct chemistry to gain a mark.		0 marks

Indicative Chemistry

Stage 1: Apparatus

- Use a burette/pipette (instead of a measuring cylinder)
- Use a polystyrene cup (instead of a beaker) / insulate beaker
- Reweigh the watchglass after adding the solid
- Use powdered solid

Stage 2: Temperature Measurements

- Measure and record the initial temperature of the solution for a few minutes before addition
- Measure and record the temperature after the addition at regular intervals (eg each minute) for 8+ minutes/until a trend is observed

Stage 3: Temperature Determination

- Plot a graph of temperature against time
- Extrapolate to the point of addition
- Determine ΔT at the point of addition

6

(c) $n(\text{HCl}) \text{ or } n(\text{NaOH}) = 50 \times 0.500 / 1000 = 0.025 \text{ moles}$

1

$$q = -\Delta H \times n = 57.1 \times 0.025 = 1.4275 \text{ kJ}$$

$$M2 = 57.1 \times M1$$

1

$$\Delta T = q/mc$$

1

$$\Delta T = (1.4275 \times 1000) / (100 \times 4.18) = 3.4(2) \text{ } ^\circ\text{C}$$

$$M4 = (M2 \times 1000) / (100 \times 4.18)$$

1

Final Temperature = $18.5 + 3.4 = 21.9 \text{ } ^\circ\text{C}$

$$M5 = M4 + 18.5 \text{ (but final temperature must be higher than } 18.5 \text{ } ^\circ\text{C)}$$

1

(d) Increase the concentration of the solutions

1

[13]