

| Name       | Class:   |            |
|------------|----------|------------|
| Start Time | End Time | Time Taken |

Time allowed: 53 minutes

### INSTRUCTIONS TO MDIDATES

- This document and demand to be used as a practice test.
- Complete the der exam conditions in one sitting.
- Optional: Between arking it, go through the paper with a set of notes and improve your answers.
- Mark the test using the may scheme make corrections on the paper.
- Complete the table on france.
- Improve your notes so that by by er reflect your weaknesses.
- Make a note of your strengths quantum esses for future revision.

| Success Criteria               | Questins in Poer         | Mark | Out of                 | % | Rank<br>Order |
|--------------------------------|--------------------------|------|------------------------|---|---------------|
| Esterification                 | la, 4                    |      | 1, 4                   |   |               |
| Addition-Elimination Mechanism | lb •                     |      | 5                      |   |               |
| Acid anhydrides                | 1c, 1d, 4b               |      | 3                      |   |               |
| Analysis                       | le                       |      | 3                      |   |               |
| Triesters                      | 2, 4c                    |      | 5, 3                   |   |               |
| Practical techniques           | 3, 6a, 6c,<br>6d, 6e, 6h |      | 2, 1,<br>1, 1,<br>1, 6 |   |               |
| Testing for acyl chlorides     | 5                        |      | 2                      |   |               |
| Calculations                   | 6b, 6j                   |      | 2, 3                   |   |               |
| Hydrolysis of esters           | 6f                       | _    | 1                      |   |               |
| Solubility                     | 6g                       |      | 2                      |   |               |
| Total                          |                          |      | 49                     |   |               |

### Mark schemes

### Q1.

(a) CH<sub>3</sub>OH + CH<sub>3</sub>CH<sub>2</sub>COOH → CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>3</sub> + H<sub>2</sub>O

1

(b) (nucleophilic) addition-elimination NOT acylation

1

$$\begin{array}{c} M2 \\ CH_3CH_2 \\ M1 \\ CI \\ CH_3CH_2 \\$$

ignore use of CI to remove H+

M3 for structure M4 for 3 arrows and lone pair

4

(c)

allow C<sub>2</sub>H<sub>5</sub> and –CO<sub>2</sub>– allow CH<sub>3</sub>CH<sub>2</sub>COOCOCH<sub>2</sub>CH<sub>3</sub> **or** (CH<sub>3</sub>CH<sub>2</sub>CO)<sub>2</sub>O

1

(d) (i) faster/not reversible/bigger yield/purer product/no(acid) (catalyst) required

1

(ii) anhydride less easily hydrolysed or reaction less violent/exothermic no (corrosive) (HCl) fumes formed or safer or less toxic/dangerous expense of acid chloride or anhydride cheaper any one

1

(e) (i) C<sub>8</sub>H<sub>8</sub>O<sub>2</sub>

1

(ii) any two from



Allow  $-CO_2$ — allow  $C_6H_5$ 

[12]

2

1

1

Q2.

- (a) (i) propan(e)-1,2,3-triol or 1,2,3- propan(e)triol not propyl ignore hyphen, commas
  - (ii) soaps

    allow anionic surfactant

    not cationic surfactant

    not detergents, not shampoos
- (b) (i) (bio)<u>diesel</u>

  Allow fuel for <u>diesel</u> engines

  not biofuel, not oils

(ii) H = C H

ignore anything else attached except any more H atoms.

(iii)  $CH_3(CH_2)_{12}COOCH_3 + 21\frac{1}{2}O_2 \rightarrow 15CO_2 + 15 \ H_2O$  OR

C<sub>15</sub>H<sub>30</sub>O<sub>2</sub> or 43/2 **not** allow equation doubled

[5]

Q3.

Sample in capillary / melting point tube

Accept alternative as long as small container used

1



Heat in melting point apparatus / heat gently / slowly near melting point

[2]

1

1

1

1

1

### Q4.

(a) **M1** CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH not C<sub>3</sub>H<sub>7</sub>COOH

M2 CH<sub>3</sub>CH<sub>2</sub>OH or C<sub>2</sub>H<sub>5</sub>OH

M3 CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>2</sub>CH<sub>3</sub> + H<sub>2</sub>O

allow C<sub>3</sub>H<sub>7</sub>COOC<sub>2</sub>H<sub>5</sub>

penalise M3 for wrong products and unbalanced equation

M4 H<sub>2</sub>SO<sub>4</sub> or HCl or H<sub>3</sub>PO<sub>4</sub> conc or dil or neither not HNO<sub>3</sub>

(b) M1 CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH

not C₄H<sub>9</sub>OH

M2 (CH<sub>3</sub>CO) <sub>2</sub>O

M3 → CH<sub>3</sub>COOCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> + CH<sub>3</sub>COOH

allow CH<sub>3</sub>COOC<sub>4</sub>H<sub>9</sub>

penalise M3 for wrong products and unbalanced equation

(d)

$$\begin{pmatrix}
CH_{2}OOCC_{17}H_{31} \\
CHOOCC_{17}H_{33} \\
CH_{2}OOCC_{17}H_{29}
\end{pmatrix} + 3 CH_{3}OH$$

$$+ CH_{2}OH$$

$$CH_{2}OH$$

$$CH_{3}OH$$

$$CH_{2}OH$$

$$CH_{3}OH$$

$$CH_{4}OH$$

$$CH_{4}OH$$

$$CH_{5}OH$$

$$CH_{5}OH$$

$$CH_{5}OH$$

$$CH_{5}OH$$

$$CH_{7}OH$$

$$CH_{$$


ignore errors in initial triester First mark for 3CH₃OH Third mark for all three esters

[10]

Q5.

Test silver nitrate (solution) (M1)

Allow an alternative soluble silver salt eg fluoride, sulfate. Do not allow 'silver ions' but can access second mark.



Incorrect formula loses this mark but can access second mark.

Do not allow 'silver' or an insoluble silver salt and cannot access

second mark.

Ignore references to acidification of the silver nitrate.

If an acid is specified it should be nitric acid, but allow sulfuric acid in this case as there are no metal ions present.

If hydrochloric acid is used, CE = 0/2.

Do not allow 'add water'.

Observation white precipitate (M2)

Ignore 'cloudy'.

Do not allow 'white fumes' or 'effervescence'.

Do not allow this mark if test reagent is incorrect or missing.

Allow named indicator paper or named indicator solution for M1.

Allow correct colour change for M2.

[2]

1

### **Q6.**

(a) allows smaller <u>bubbles</u> to form / prevents the formation of (very) large <u>bubbles</u>

ALLOW provides large surface area for bubbles to form on

IGNORE 'air'

NOT no bubbles form / prevents bubbles forming

(b) (Mass of ester =  $1.05 \times 5.0 = 5.25g$ ) amount of ester = 5.25 / 150.0 = 0.0350 mol

amount of NaOH =  $30 \times 2 / 1000 = 0.06 \text{ mol}$ 

1

1

1

#### OR

(Mass of ester =  $1.05 \times 5.0 = 5.25g$ ) amount of ester = 5.25 / 150.0 = 0.0350 mol

1

Vol of 0.035 mol of NaOH =  $(0.035/2) \times 1000 = 17.5 \text{ cm}^3$  (so 30 cm³ used is an excess)

1

#### OR

amount of NaOH =  $30 \times 2 / 1000 = 0.06 \text{ mol}$ 

1

0.06 mol of ester = 9 g =  $8.57 \text{ cm}^3$  (only 5 cm<sup>3</sup> used so NaOH in excess)

1

Mark independently

Max 2



| (c) | To ensure that the ester is completely hydrolysed / to ensure all the ester reacts<br>ALLOW to ensure the other reagent has completely reacted                                           | 1 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (d) | Many organic compounds / the ester / ethanol are flammable  ALLOW prevent ignition of any flammable vapours formed                                                                       | 1 |
| (e) | Reflux allows reactant vapours (of volatile organic compounds) to be returned to the reaction mixture / does not allow any reactant vapour to escape  IGNORE reference to products       |   |
| (f) | $C_6H_5COONa + HCI \rightarrow C_6H_5COOH + NaCI$ Allow ionic equation.  ALLOW molecular formulae ( $C_7H_5O_2Na$ and $C_7H_6O_2$ )  ALLOW skeletal benzene ring                         | 1 |
| (g) | Sodium benzoate soluble because it is ionic  IGNORE polar                                                                                                                                | 1 |
|     | Benzoic acid insoluble because: despite the polarity of the COOH group / ability of COOH to form H-bonds, the benzene ring is non-polar.  ALLOW 'part of molecule' or 'one end' for COOH | 1 |
| (h) | Dissolve crude product in <u>hot</u> solvent/water  ALLOW ethanol  If no M1 max = 4                                                                                                      | 1 |
|     | of minimum volume                                                                                                                                                                        |   |
|     | ALLOW reference to saturated soln as alternative to 'min vol'                                                                                                                            | 1 |
|     | Filter (hot to remove insoluble impurities)  IGNORE use of Buchner funnel here                                                                                                           | 1 |
|     | Cool to recrystallise  apply list principle for each additional process in an incorrect method but IGNORE additional m.pt determination                                                  | 1 |
|     | Filter under reduced pressure / with Buchner/Hirsch apparatus                                                                                                                            | 1 |
|     | wash (with cold solvent) and dry                                                                                                                                                         | 1 |
| (i) | 5.12 / 122 (= 0.042 mol)<br>method mark                                                                                                                                                  | 1 |



 $(0.042/0.04) \times 100 = 105 \%$ ecf for M1/0.04 or calculation that 0.04 mol of benzoic = 4.88 g (M1) so % yield =  $(5.12/4.88) \times 100 = 105\%$ 

1

Product not dried / impurities present in product

Only allow M3 if M2>100%

1

[18]