

Time allowed: 53 minutes		
Start Time	End Time	Time Taken
Name	Class:	

INSTRUCTIONS TO CANDIDATES

- This document is designed to be used as a practice test.
- Complete the test under exam conditions in one sitting.
- Optional: Before marking it, go through the paper with a set of notes and improve your answers.
- Mark the test using the mark scheme make corrections on the paper.
- Complete the table on the front page.
- Improve your notes so that they better reflect your weaknesses.
- Make a note of your strengths and weaknesses for future revision.

Success Criteria	Questions in Paper	Mark	Out of	%	Rank Order
Esterification	1a, 4a		1, 4		
Addition-Elimination Mechanism	1b		5		
Acid anhydrides	1c, 1d, 4b		1, 2, 3		
Analysis	le		3		
Triesters	2, 4c		5, 3		
Practical techniques	3, 6a, 6c, 6d, 6e, 6h		2, 1, 1, 1, 1, 6		
Testing for acyl chlorides	5		2		
Calculations	6b, 6j		2, 3		
Hydrolysis of esters	6f		1		
Solubility	6g		2		
Total			49		

	rite an equation for the formation of methyl propanoate, CH ₃ CH ₂ COOCH ₃ , from ethanol and propanoic acid.
	ame and outline a mechanism for the reaction between methanol and propanoyl loride to form methyl propanoate.
N	ame of mechanism
М	echanism
	opanoic anhydride could be used instead of propanoyl chloride in the preparation of ethyl propanoate from methanol. Draw the structure of propanoic anhydride.
(i)	Give one advantage of the use of propanoyl chloride instead of propanoic acid in the laboratory preparation of methyl propanoate from methanol.
(ii)	Give one advantage of the use of propanoic anhydride instead of propanoyl chloride in the industrial manufacture of methyl propanoate from methanol.
(ii)	

	peai	x at m/z = 136.		
	(i)	Deduce the molecular for	nula of this ester.	
	(ii)	Draw two possible structu	res for this ester.	
				(Total 12 mark
				(10tal 12 mark
hyd	roxide		n palm oil. When T is heated wit Il is formed together with a mixtu	h an excess of sodium
The hyd	roxide	solution, the alcohol glycer		th an excess of sodium are of three other products
The hyd as s	roxide shown	solution, the alcohol glycer	ol is formed together with a mixtu	th an excess of sodium are of three other products
The hyd as s	roxide shown ₂ OOC	solution, the alcohol glycer in the following equation. (CH ₂) ₁₄ CH ₃	Ol is formed together with a mixture $CH_3(CH_2)_{14}$	ch an excess of sodium lire of three other products
The hyd as s	roxide shown ₂ OOC(solution, the alcohol glycer in the following equation. (CH ₂) ₁₄ CH ₃	ol is formed together with a mixtuod ${ m CH_3(CH_2)_{14}}$ ${ m CH_2OH}$ +	ch an excess of sodium lire of three other products
The hyd as s	roxide shown ₂ OOC(solution, the alcohol glycer in the following equation. (CH ₂) ₁₄ CH ₃ CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₃ +	Ol is formed together with a mixtue $ CH_3(CH_2)_{14}^4 $ $ CH_2OH + \\ BNaOH → CHOH + CH_3(CH_2)_7C $	ch an excess of sodium are of three other products COONa CH=CH(CH ₂) ₇ COONa
The hyd as s	roxide shown ₂ OOC(solution, the alcohol glycer in the following equation. (CH ₂) ₁₄ CH ₃ CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₃ + (CH ₂) ₁₂ CH ₃	ol is formed together with a mixtue $CH_3(CH_2)_{14}$, CH_2OH + $H_3(CH_2)_{7}CH_2OH$ + $H_3(CH_2)_{7}CH_2OH$ + $H_3(CH_2)_{7}CH_2OH$ +	ch an excess of sodium are of three other products COONa CH=CH(CH ₂) ₇ COONa
The hyd as s	roxide shown 2000(000((2000)	solution, the alcohol glycer in the following equation. (CH ₂) ₁₄ CH ₃ CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₃ + (CH ₂) ₁₂ CH ₃	of is formed together with a mixtue $CH_3(CH_2)_{14}$ CH_2OH $+$ $BNaOH \Rightarrow CHOH + CH_3(CH_2)_7 CH_2OH$ $+$ $CH_3(CH_2)_{12}$ $CH_3(CH_2)_{12}$ $CH_3(CH_2)_{12}$ $CH_3(CH_2)_{12}$	ch an excess of sodium are of three other products COONa CH=CH(CH ₂) ₇ COONa
CH CHC	roxide shown 200C(0 00C(0 200C(solution, the alcohol glycer in the following equation. (CH ₂) ₁₄ CH ₃ CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₃ + (CH ₂) ₁₂ CH ₃ Give the IUPAC name for	CH ₃ (CH ₂) ₁₄ t CH ₂ OH + BNaOH → CHOH + CH ₃ (CH ₂) ₇ C CH ₂ OH + CH ₂ OH cH ₃ (CH ₂) ₇ C glycerol	ch an excess of sodium are of three other products COONa CH=CH(CH ₂) ₇ COONa COONa
CH CHC	roxide shown 2000(000((2000)	solution, the alcohol glycer in the following equation. (CH ₂) ₁₄ CH ₃ CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₃ + (CH ₂) ₁₂ CH ₃ Give the IUPAC name for	of is formed together with a mixtue $CH_3(CH_2)_{14}$ CH_2OH $+$ $BNaOH \Rightarrow CHOH + CH_3(CH_2)_7 CH_2OH$ $+$ $CH_3(CH_2)_{12}$ $CH_3(CH_2)_{12}$ $CH_3(CH_2)_{12}$ $CH_3(CH_2)_{12}$	th an excess of sodium are of three other products COONa CH=CH(CH ₂) ₇ COONa COONa

(b)		en ${f T}$ is heated with an excess of methanol, glycerol is formed together with a mixture ethyl esters.	
	(i)	Give a use for this mixture of methyl esters.	
			(1)
	(ii)	One of the methyl esters in the mixture has the IUPAC name methyl (Z)-octadec-9-enoate. Draw two hydrogen atoms on the diagram below to illustrate the meaning of the letter Z in the name of this ester.	
		c = c	
			(1)
	(iii)	One of the other methyl esters in the mixture has the formula CH ₃ (CH ₂) ₁₂ COOCH ₃ Write an equation for the complete combustion of one molecule of this ester.	
		(Total 5 ma	(1) arks)
Q3.			
Desc	cribe b	oriefly how you could measure the melting point of aspirin.	
		(Total 2 ma	ırks)

Q4.

Esters have many important commercial uses such as solvents and artificial flavourings in foods.

Esters can be prepared in several ways including the reactions of alcohols with carboxylic acids, acid anhydrides, acyl chlorides and other esters.

Write an equation for the proporation of athyl hytopoeta from an exid and an electrol
Write an equation for the preparation of ethyl butanoate from an acid and an alcohol.
Give a catalyst used for the reaction.
Butyl ethanoate is used as a solvent in the pharmaceutical industry.
Write an equation for the preparation of butyl ethanoate from an acid anhydride and ar alcohol.

(c)	The ester shown below occurs in vegetable oils. Write an equation to show the form of biodiesel from this ester.	nation
	CH ₂ OOCC ₁₇ H ₃₁	
	CHOOCC ₁₇ H ₃₃	
	 CH ₂₃ OOCC ₁₇ H ₂₉	
		_
		_
		_
		_
		_
		_
	(то	otal 10 marks)
Q5.		
Alde	hydes can be prepared from acyl chlorides.	
unre	e how an aldehyde could be tested to show whether it is contaminated with traces of acted acyl chloride. e what you would observe.	
Test		_
Obse	ervation	_
	(7	_ 「otal 2 marks)

Q6.

Benzoic acid can be prepared from ethyl benzoate.

Ethyl benzoate is first hydrolysed in alkaline conditions as shown:

A student used the following method.

Add 5.0 cm³ of ethyl benzoate (density = $1.05 \,\mathrm{g}\,\mathrm{cm}^{-3}$, $M_{\rm r}$ = 150) to $30.0 \,\mathrm{cm}^{3}$ of aqueous 2 mol dm⁻³ sodium hydroxide in a round-bottomed flask.

Add a few anti-bumping granules and attach a condenser to the flask. Heat the mixture under reflux for half an hour. Allow the mixture to cool to room temperature.

Pour 50.0 cm³ of 2 mol dm⁻³ hydrochloric acid into the cooled mixture.

Filter off the precipitate of benzoic acid under reduced pressure.

Show, by calculation, that an excess of sodium hydroxide is used in this reaction.
Suggest why an excess of sodium hydroxide is used.

(6)

	used in this hydrolysis.
	or the reaction between sodium benzoate and hydrochloric acid.
old water.	m benzoate is soluble in cold water but benzoic acid is insoluble in
fter the solid benz	coic acid has been filtered off, it can be purified.
escribe the metho	od that the student should use to purify the benzoic acid.

(i)

benzoic acid.	
. .	
Percentage yield	%
Percentage yield	%
	%
	benzoic acid.