

(3)

(3)

Q17.

The following pairs of compounds can be distinguished by simple test-tube reactions.

For each pair of compounds, give a reagent (or combination of reagents) that, when added separately to each compound, could be used to distinguish between them. State what is observed in each case.

(a) Butan-2-ol and 2-methylpropan-2-ol

Reagent _____

Observation with butan-2-ol

Observation with 2-methylpropan-2-ol

(b) Propane and propene

Reagent _____

Observation with propane

Observation with propene

(c) Aqueous silver nitrate and aqueous sodium nitrate

Reagent _____

Observation with aqueous silver nitrate

Observation with aqueous sodium nitrate

(3)

Aqueous magnesium chloride and aqueous barium chloride
Reagent
Observation with aqueous magnesium chloride
Observation with aqueous barium chloride

(Total 12 marks)

(3)

Q18.

(d)

The following five isomers, **P**, **Q**, **R**, **S** and **T**, were investigated using test-tube reactions and also using n.m.r. spectroscopy.

(a) A simple test-tube reaction can be used to distinguish between isomers **P** and **S**.

Identify a reagent (or combination of reagents) you could use. State what you would observe when both isomers are tested separately with this reagent or combination of reagents.

(b)

(c)

(d)

(3)

(2)

A simple test-tube reaction can be used to distinguish between isomer Q and all the other isomers.	
Identify a reagent (or combination of reagents) you could use. State what you would observe when ${f Q}$ is tested with this reagent or combination of reagents.	
State which one of the isomers, P , Q , R , S and T , has the least number of peaks in its ¹ H n.m.r. spectrum. Give the number of peaks for this isomer.	
Write the molecular formula of the standard used in ¹³ C n.m.r. spectroscopy. Give two reasons why this compound is used.	

(2)

(3)

Figure 1 and Figure 2 show the ¹³C n.m.r. spectra of two of the five isomers. (e)

Figure 1

Figure 2

The structures of the five isomers are repeated to help you answer this question.

State which isomer produces the spectrum in **Figure 1** and which isomer produces the spectrum in **Figure 2**.

Explain your answer.

You do not need to identify every peak in each spectrum. Use **Table C** on the Data Sheet to answer the question.

(5)

 (f) U and V are other isomers of P, Q, R, S and T. The ¹H n.m.r. spectrum of U consists of two singlets.
 V is a cyclic alcohol that exists as optical isomers.

Draw the structure of **U** and the structure of **V**.

U

V

(2) (Total 17 marks)

Q19.

The following table gives the names and structures of some structural isomers with the molecular formula C_5H_{10} .

	Name of isomer Structure	
lsomer 1	pent-2-ene	$CH_3CH = CHCH_2CH_3$
lsomer 2	cyclopentane	
Isomer 3	3-methylbut-1-ene	$(CH_3)_2CHCH = CH_2$

Mr Cole Chemistry

(2)

(1)

lsomer 4	2-methylbut-2-ene	(CH ₃) ₂ C = CHCH ₃
lsomer 5	2-methylbut-1-ene	$H_2C = C(CH_3)CH_2CH_3$

- (a) Isomer **1** exists as E and Z stereoisomers.
 - (i) State the meaning of the term **stereoisomers**.

(ii) Draw the structure of the E stereoisomer of Isomer 1.

(b) A chemical test can be used to distinguish between separate samples of Isomer **1** and Isomer **2**.

Identify a suitable reagent for the test. State what you would observe with Isomer **1** and with Isomer **2**.

Reagent
Observation with Isomer 1
Observation with Isomer 2

(3)

- (c) Use **Table A** on the Data Sheet when answering this question. Isomer **3** and Isomer **4** have similar structures.
 - (i) State the infrared absorption range that shows that Isomer **3** and Isomer **4** contain the same functional group.

Test Tube	Reactions 3	Mr Cole Chemistry	
			(1)
(ii)	State one way that the infrared spectrum of Isomer 4 .	I spectrum of Isomer 3 is different from the infrared	(1)
			(1)

(d) Two alcohols are formed by the hydration of Isomer 4.

Draw the **displayed formula** for the alcohol formed that is oxidised readily by acidified potassium dichromate(VI).

- (e) Isomer 4 reacts with hydrogen bromide to give two structurally isomeric bromoalkanes.
 - (i) Name and outline a mechanism for the reaction of Isomer **4** with hydrogen bromide to give 2-bromo-2-methylbutane as the major product.

 $(CH_3)_2C = CHCH_3 + HBr \longrightarrow (CH_3)_2CBrCH_2CH_3$

Name of mechanism _____

Mechanism

(ii) The minor product in this reaction mixture is 2-bromo-3-methylbutane.

Explain why this bromoalkane is formed as a minor product.

(5)

(1)

 \sim

st Tu	be Reactions 3	Mr Cole Chemistry
(f)	Name and outline a machanism for the fo	(2
(1)	State the role of the hydroxide ion in this	reaction.
	$(CH_3)_2CBrCH_2CH_3 + KOH \longrightarrow H_2C$	$= C(CH_3)CH_2CH_3 + KBr + H_2O$
	Name of mechanism	
	Mechanism	
	Role of hydroxide ion	
		(5) (Total 21 marks)
020		
Etha	anoic acid, propyl ethanoate and propan-1-	ol are all colourless liquids. Esters do not give a

State how you could use chemical tests to show the presence of ethanoic acid and propan-1-ol in a mixture of the acid, the alcohol and the ester.

Q21.

The following pairs of compounds can be distinguished by simple test-tube reactions.

Mr Cole Chemistry

For each pair, give a suitable reagent that could be added separately to each compound to distinguish between them. Describe what you would observe in each case. (a) AgBr(s) and AgI(s) Reagent _____ Observation with AgBr(s) _____ Observation with AgI(s) (3) (b) HCI(aq) and HNO₃(aq) Reagent _____ Observation with HCI(aq) Observation with HNO₃(aq) (3) Cyclohexane and cyclohexene (C) Reagent _____ Observation with cyclohexane Observation with cyclohexene (3) (d) Butanal and butanone Reagent _____ Observation with butanal Observation with butanone (3)

Q22.

(a) A chemist discovered four unlabelled bottles of liquid, each of which contained a different pure organic compound. The compounds were known to be propan-1-ol, propanal, propanoic acid and 1-chloropropane.

Describe four **different** test-tube reactions, one for each compound, that could be used to identify the four organic compounds.

Your answer should include the name of the organic compound, the reagent(s) used and the expected observation for each test.

(8)

(b) A fifth bottle was discovered labelled propan-2-ol. The chemist showed, using infrared spectroscopy, that the propan-2-ol was contaminated with propanone.

The chemist separated the two compounds using column chromatography. The column contained silica gel, a polar stationary phase.

The contaminated propan-2-ol was dissolved in hexane and poured into the column. Pure hexane was added slowly to the top of the column. Samples of the eluent (the solution leaving the bottom of the column) were collected.

- Suggest the chemical process that would cause a sample of propan-2-ol to become contaminated with propanone.
- State how the infrared spectrum showed the presence of propanone.
- Suggest why propanone was present in samples of the eluent collected first (those with shorter retention times), whereas samples containing propan-2-ol were collected later.

(Total 12 marks)

Q17.

(a) M1 acidified potassium dichromate or $K_2Cr_2O_7$ / H_2SO_4

OR K₂Cr₂O₇ / H⁺ OR acidified K₂Cr₂O₇

M2 (orange to) green solution OR goes green

M3 (solution) remains orange or no reaction or no (observed) change

If no reagent or incorrect reagent in **M1**, **CE** = **0** and no marks for **M1**, **M2** or **M3**

If incomplete / inaccurate attempt at reagent e.g. "dichromate" or "dichromate(IV)" or incorrect formula or no acid, **penalise M1 only** and mark on

For **M2** ignore dichromate described as "yellow" or "red" For **M3** ignore "nothing (happens)" or "no observation"

Alternative using KMnO₄ / H₂SO₄

- M1 acidified potassium manganate(VII) / potassium permanganate or $KMnO_4$ / H_2SO_4
- OR KMnO₄ / H⁺ OR acidified KMnO₄
- M2 colourless solution OR goes colourless
- M3 (solution) remains <u>purple</u> or no reaction or no (observed) change

For **M1**

If incomplete / inaccurate attempt at reagent e.g. "manganate" or "manganate(IV)" or incorrect formula or no acid, **penalise M1 only** and mark on

Credit alkaline KMnO₄ for possible full marks but **M2** gives <u>brown</u> <u>precipitate</u> or solution goes <u>green</u>

3

- (b) M1 (Shake with) Br₂ OR bromine (water) OR bromine (in CCl₄ / organic solvent)
 - M2 (stays) orange / red / yellow / brown / the same

OR no reaction OR no (observed) change

M3 decolourised / goes colourless / loses its colour / orange to colourless If no reagent or incorrect reagent in M1, CE = 0 and no marks for M1, M2 or M3 If incomplete / inaccurate attempt at reagent (e.g. Br), penalise M1 only and mark on No credit for combustion observations; CE = 0 For M2 in every case Ignore "nothing (happens)" Ignore "no observation" Ignore "clear"

OR as alternatives

Use $KMnO_4$ / H_2SO_4

M1 acidified potassium manganate(VII) / potassium permanganate OR KMnO₄ / H₂SO₄

OR KMnO₄ / H⁺ OR acidified KMnO₄

M2 (stays) purple or no reaction or no (observed) change

M3 decolourised / goes colourless / loses its colour

Use iodine

M1 iodine or I_2 / KI or iodine solution

M2 no change

M3 decolourised / goes colourless / loses its colour

Use concentrated sulfuric acid

- M1 concentrated H₂SO₄
- M2 no change

M3 brown

For M1, it must be a whole reagent and / or correct formulaFor M1 penalise incorrect attempt at correct formula, but mark M2 and M3

With potassium manganate(VII)

If incomplete / inaccurate attempt at reagent e.g. "manganate" or "manganate(IV)" or incorrect formula or no acid, **penalise M1 only** and mark on

Credit alkaline / neutral KMnO₄ for possible full marks but **M3** gives <u>brown precipitate</u> or solution goes <u>green</u>

Apply similar guidance for errors in the formula of iodine or concentrated sulfuric acid reagent as those used for other reagents.

(c) **M1** Any soluble chloride including hydrochloric acid (ignore concentration)

M2 white precipitate or white solid / white suspension

M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

OR as an alternative

M1 Any soluble iodide including HI

M2 yellow precipitate or yellow solid / yellow suspension

M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

OR as an alternative

M1 Any soluble bromide including HBr

M2 cream precipitate or cream solid / cream suspension

M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

OR as an alternative

- M1 NaOH or KOH or any soluble carbonate
- M2 <u>brown precipitate</u> or <u>brown solid / brown suspension</u> with NaOH / KOH (white precipitate / solid / suspension with carbonate)

M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

If no reagent or incorrect reagent or insoluble chloride in **M1**, **CE** = **0** and no marks for **M1**, **M2** or **M3**

Allow chlorine water

If incomplete reagent (e.g. chloride ions) or inaccurate attempt at formula of chosen chloride, or chlorine, **penalise M1 only and mark on**

For **M2** require the word "white" and some reference to a solid. Ignore "cloudy solution" OR "suspension" (similarly for the alternatives)

For **M3**

Ignore "nothing (happens)" Ignore "no observation" Ignore "clear" <u>on its own</u> Ignore "dissolves"

3

(d) M1 Any soluble sulfate including (dilute or aqueous) sulfuric acid

M2 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

M3 white precipitate or white solid / white suspension

If no reagent or incorrect reagent or insoluble sulfate in M1, CE = 0 and no marks for M1, M2 or M3

Accept $MgSO_4$ and $CaSO_4$ but not barium, lead or silver sulfates If concentrated sulfuric acid or incomplete reagent (e.g. sulfate ions) or inaccurate attempt at formula of chosen sulfate, **penalise M1 only and mark on**

For **M3 (or M2 in the alternative)** require the word "white" and some reference to a solid.

Ignore "cloudy solution" OR "suspension"

For M2 (or M3 in the alternative)

Ignore "nothing (happens)"

Ignore "no observation"

Ignore "clear" <u>on its own</u> Ignore "dissolves"

OR as an alternative

M1 NaOH or KOH

M2 white precipitate or white solid / white suspension

M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

If incomplete reagent (e.g. hydroxide ions) or inaccurate attempt at formula of chosen hydroxide, **penalise M1 only and mark on** If **M1** uses NH₃ (dilute or concentrated) **penalise M1 only and mark on**

[12]

3

1

1

Q18.

(a) Reagent

 $\begin{array}{l} \text{Acidified} \\ \text{K}_2\text{Cr}_2\text{O}_7 \end{array}$

Acidified KMnO4

I2 / NaOH

Named RCOOH with HCl or H₂SO₄

Named RCOCI

> Allow names including potassium permanganate Wrong or no reagent CE = 0

Yellow ppt no reaction no reaction

P (ketone) no reaction no reaction

Penalise incorrect formulae or incomplete reagent, such as $K_2Cr_2O_7$ or acidified dichromate, but mark on.

S (2° alcohol) (orange to) green (purple to) colourless no reaction fruity or sweet smell Misty fumes

Allow no change or nvc but penalise nothing or no observation

1

If 2 reagents added sequentially or 2 different reagents used for P and S then CE = 0

(b)	Tollens' silver mirror / solid	1
	Fehling's / Benedicts red ppt	1
(c)	G P	
	If not P then no marks for clip 5 OR five	1
(d)	C ₄ H ₁₂ Si	1
	Wust be molecular formula Wrong substance $CE = 0$ for clip	1
	Any two from <u>One or single</u> peak OR all (four) carbon atoms are equivalent or one environment 	1
	 upfield from others or far away from others or far to right non toxic OR inert low boiling point or volatile or easy removed from sample Ignore and don't credit single peak linked to 12 equivalent H or has a peak at δ = 0 but use list principle for wrong statements 	
		1 1
(e)	Figure 1 is R If not R cannot score M2	
	Ν	/1 1
	90–150 (ppm) or value in range is (two peaks for) C = C / alkene	И2
	Figure 2 is T If not T cannot score M4 or M5	1
	Λ	//3 1
	50-90 (ppm) or value in range is C—O or alcohol or ether	
	Ν	Л4 1

emistry

two peaks (so not S which would have only one)

M5 1

Answers include

because V must be an isomer of S

[17]

Q19. (a)

 (i) M1 (Compounds / molecules with) the <u>same structural formula</u> *Penalise M1 if 'same structure' or 'different structural / displayed formula'.*

M2 with atoms / bonds / groups arranged differently in space

OR <u>atoms / bonds / groups</u> with <u>different spatial arrangements / different</u> <u>orientation</u>

Ignore references to 'same molecular formula' or 'same empirical formula'.

Mark independently.

(ii)

Credit C–H₃C Credit C₂H₅ Penalise C–CH₃CH₂

1

2

- (b) M1 Br₂ OR bromine (water) OR bromine (in CCl₄ / organic solvent) If M1, has no reagent or an incorrect reagent, CE=0. Ignore 'acidified'.
 - M2 Isomer 1: decolourised / goes colourless / loses its colour For M1 penalise Br (or incorrect formula of other correct reagent), but mark on.

M3 Isomer 2: remains orange / red / yellow / brown / the same **OR** no reaction / no (observable) change **OR** reference to colour going to the cyclopentane layer

For **M1**, it must be a whole reagent and / or correct formula.

If oxidation state given in name, it must be correct. If 'manganate' OR 'manganate(IV)' or incorrect formula, penalise **M1**, but mark on.

Alternatives : potassium manganate(VII)

M1 KMnO₄ in acid M2 colourless M3 purple

M1 KMnO4 in alkali / neutral M2 brown solid M3 purple

Credit for the use of iodine

M1 iodine (solution / in KI) M2 colourless M3 (brown) to purple (credit no change)

Credit for the use of <u>concentrated</u> H_2SO_4

M1 concentrated H_2SO_4 M2 brown M3 no change / colourless

Ignore 'goes clear'. Ignore 'nothing (happens)'. Ignore 'no observation'. No credit for combustion observations.

- (c) (i) (Both infrared spectra show an absorption in range) <u>**1620 to 1680**</u> (cm⁻¹) Ignore reference to other ranges (eg for C–H or C–C).
- 1

3

(ii) The <u>fingerprint</u> (region) / below 1500 cm⁻¹ will be different or its <u>fingerprinting</u> will be different

1

1

OR

different <u>absorptions / peaks</u> are seen (in the region) below 1500 cm⁻¹ (or a specified region within the fingerprint range)

Allow the words 'dip' **OR** 'spike' **OR** 'low transmittance' as alternatives for absorption. **QoL**

(d)

All bonds must be drawn. Ignore bond angles.

(e) (i)

M1 Electrophilic addition

M1 both words needed.

Penalise one mark from their total if half-headed arrows are used.

M2 must show an arrow from the double bond towards the H atom of the H–Br molecule

M2 Ignore partial negative charge on the double bond.

M3 must show the breaking of the H–Br bond

M3 Penalise incorrect partial charges on H–Br bond and penalise formal charges.

M4 is for the structure of the tertiary carbocation

Penalise **M4** if there is a bond drawn to the positive charge. Penalise once only in any part of the mechanism for a line and two dots to show a bond.

M5 must show an arrow from the lone pair of electrons on the negatively charged bromide ion towards the positively charged carbon atom of either a secondary or a tertiary carbocation

For **M5**, credit attack on a partially positively charged carbocation structure but penalise **M4**.

Mr Cole Chemistry

<u>Max 3 of any 4 marks in the mechanism</u> for wrong organic reactant or wrong organic product (if shown) or secondary carbocation.

<u>Max 2 of any 4 marks in the mechanism</u> for use of bromine. Do not penalise the correct use of 'sticks".

NB The arrows here are double-headed

5

2

(ii) M1 Reaction goes via intermediate <u>carbocations / carbonium ions</u>
 M1 is a lower demand mark for knowledge that carbocations are involved.

M2 (scores both marks and depends on M1)

<u>Tertiary carbocation</u> / <u>carbonium ion</u> is <u>more stable</u> (than the secondary carbocation / carbonium ion)

OR

<u>Secondary carbocation</u> / <u>carbonium ion</u> is <u>less stable</u> (than the tertiary carbocation / carbonium ion)

M2 is of higher demand and requires the idea that the secondary carbocation is less stable or the tertiary carbocation is more stable. Reference to incorrect chemistry is penalised.

A carbocation may be defined in terms of alkyl groups / number of carbon atoms, rather than formally stated.

(f) M1 Elimination

M1 credit 'base elimination' but no other qualifying prefix.

Penalise one mark from their total if half-headed arrows are used.

M2 must show an arrow from the <u>lone pair on oxygen</u> of a <u>negatively charged</u> <u>hydroxide</u> ion <u>to a correct</u> H atom

Penalise M2 if covalent KOH

M3 must show an arrow from a correct C–H bond adjacent to the C–Br bond to a correct C–C bond. Only award if an arrow is shown attacking the H atom of a correct adjacent C–H bond (in **M2**)

M4 is independent provided it is from their <u>original molecule</u> BUT penalise M2, M3 and M4 if nucleophilic substitution shown

Award full marks for an E1 mechanism in which M2 is on the correct carbocation

NB The arrows here are double-headed

Mr Cole Chemistry

	Penalise M4 for formal charge on C or Br of the C–Br bond or incorrect partial abarrage on C. Br		
	Penalise M4 if an additional arrow is drawn from the Br of the C -		
	Br bond to, for example, K ⁺ .		
	Ignore other partial charges.		
	Penalise once only in any part of the mechanism for a line and two dots to show a bond.		
	Max 2 of any 3 marks in the mechanism for wrong reactant or		
	wrong organic product (if shown) <u>or</u> a correct mechanism that leads to the alkene 2-methylbut-2-ene.		
	Credit the correct use of "sticks" for the molecule except for the C– H being attacked.		
	M5 hydroxide ion behaves as a <u>base</u> / <u>proton acceptor</u> / <u>electron pair donor</u> / <u>lone</u> pair donor		
	Penalise M5 if 'nucleophile'.		
		5	[04]
			[21]
000			
QZU.	tification of acid by suitable method og named indicator, named carbonate		
spe	cified reactive metal		
	Ignore any reference to the smell of the ester.		
		1	
with	expected results		
	Do not allow the use of any instrumental method eg i.r. or n.m.r.;		
	must be a <u>chemical</u> test.	1	
Ider dich	itification of alcohol by suitable method eg oxidation by acidified potassium romate(VI)		
		1	
with	expected results		
		1	
			[4]
Q21.			
(a)	M1 concentrated sulfuric acid OR c(onc) H_2SO_4		
	It no reagent or incorrect reagent in M1, CE= 0 and no marks for M2 or M3		
	M2 (cream solid) turns orange		
	OR orange / red / brown fumes / gas / vapour		
	If <u>dilute</u> sulfuric acid OR "aq" <u>(alone)</u> CE=0		
	M3 (yellow solid) turns black		
	OR <u>purple fumes / gas / vapour</u>		
	Unconnect reference to $\pi_2 \Im$ observation (eg bad egg smell) If $H_2 \Im \Omega_2$, sulfuric acid given but not stated whether dilute or		
	n 1120047 Sultano acia given bal not stated whether dilate of		

concentrated, penalise **M1** and mark on for **M2** and **M3** If incorrect formula for the acid, penalise **M1** but mark **M2** and **M3**

OR as an alternative

M1 concentrated ammonia OR c(onc) NH3

If NH₃ / ammonia / aq ammonia given, but not stated as <u>concentrated</u> **OR** if <u>dilute</u> ammonia given, penalise **M1** but mark on for **M2** and **M3** Ignore "partially" and ignore "clear" in **M2**

M2 (cream solid) dissolves / solution formed

M3 precipitate remains / does not dissolve / insoluble **OR** no reaction / no change / (yellow solid) turns to white solid

> If incorrect formula for ammonia, penalise **M1** but mark **M2** and **M3** In **M3** for ammonia. ignore "nothing (happens)". ignore "no observation".

 (b) M1 AgNO₃ OR silver nitrate OR any soluble silver salt
 If no reagent OR incorrect reagent in M1, CE= 0 and no marks for M2 OR M3

M2 white precipitate or white solid / white suspension

An insoluble silver salt OR Tollens' **OR** Ag **OR** ammoniacal silver nitrate or HCI / AgNO₃ **CE= 0** for the clip.

M3 remains colourless **OR** no reaction **OR** no (observed) change **OR** no precipitate

For M1

Credit acidified (**OR** HNO₃) silver nitrate for **M1** and mark on. If silver ions or incorrect formula for silver nitrate, penalise **M1** but mark **M2** and **M3**

Credit alternative test for nitrate ions

For **M2** Ignore "cloudy solution" **OR** "suspension". For **M3** Ignore "nothing (happens)". Ignore "no observation". Ignore "clear". Ignore "dissolves".

3

3

(c) M1 Br₂ OR bromine (water) OR bromine (in CCl₄ / organic solvent)
 If no reagent or incorrect reagent in M1, CE= 0 and no marks for M2 or M3

Either Order

M2 (stays) Orange / red / yellow / brown / the same *OR* no reaction *OR* no (observed) change *OR* reference to colour going to cyclohexane layer *No credit for combustion observations; CE=0*

For **M2 in every case**. Ignore "nothing (happens)". Ignore "no observation". Ignore "clear".

M3 decolourised / goes colourless / loses its colour

With bromine (water)

For M1, it must be a whole reagent and / or correct formula. If oxidation state given in name, it must be correct. **For M1** penalise incorrect formula, but mark **M2** and **M3**

OR as an alternative

Use KMnO₄/H₂SO₄ M1 acidified potassium manganate(VII) or KMnO₄/H₂SO₄ *OR* KMnO₄/ H⁺ *OR* acidified KMnO₄ M2 (stays) <u>purple</u> or no reaction or no (observed) change

> With potassium manganate(VII) For M1

M3 purple to colourless solution OR goes colourless

If "manganate" or "manganate(IV)" or incorrect formula or no acid, penalise **M1** but mark **M2** and **M3**

Credit alternative test using **iodine** (for **M1**) M2 (brown) to purple or accept no change, M3 colourless Credit alternative test using <u>concentrated</u> H₂ SO₄ M2 no change, M3 brown

Credit alkaline / neutral KMnO₄ for possible full marks but **M3** gives <u>brown precipitate</u> or solution goes <u>green</u>.

3

(d) M1 Tollens' (reagent) OR ammoniacal silver nitrate OR a description of making Tollens'

(Ignore either AgNO₃ or $[Ag(NH_3)_{2^+}]$ or "the silver mirror test" on their own, but mark M2 and M3)

M2 <u>silver mirror</u>

OR black solid / precipitate (Ignore silver precipitate)

M3 (stays) colourless or no reaction or no (observed) change

If no reagent or incorrect reagent in **M1**, **CE= 0** and no marks for **M2** or **M3**

For M3 in every case Ignore "nothing (happens)". Ignore "no observation".

Alternative using Fehling's (solution) M1 Fehling's (solution) or Benedict's solution (Ignore Cu²⁺(aq) or CuSO₄ on their own, but mark M2 and M3) M2 <u>Red solid / precipitate</u> (Credit Orange or brown <u>solid</u>) M3 (stays) <u>blue</u> or no reaction or no (observed) change

With potassium dichromate(VI)

For M1

If "dichromate" or "(potassium) dichromate(IV)" or incorrect formula or no acid, penalise **M1** but mark **M2** and **M3**

Alternative using K₂Cr₂O₇/H₂ SO₄ M1 acidified potassium dichromate or K₂Cr₂O₇/H₂SO₄ *OR* K₂Cr₂O₇/H⁺ *OR* acidified K₂Cr₂O₇ M2 (Orange to) green solution OR goes green M3 (stays) <u>Orange</u> or no reaction or no (observed) change *For M3*

Ignore dichromate described as "yellow" or "red".

With potassium manganate(VII) For M1

If "manganate" or "(potassium manganate(IV)" or incorrect formula or no acid, penalise M1 but mark M2 and M3

Alternative using KMnO₄ /H₂ SO₄ M1 acidified potassium manganate(VII) or KMnO₄ /H₂ SO₄ *OR* KMnO₄ /H⁺ *OR* acidified KMnO₄ M2 <u>purple to colourless</u> solution OR goes <u>colourless</u> M3 (stays) <u>purple</u> or no reaction or no (observed) change *Credit alkaline / neutral KMnO₄ for possible full marks but* **M2** *gives brown precipitate or solution goes <u>green</u>.*

[12]

3

Q22.

 (a) If 2 stage test for one compound, award no marks for that compound, eg no mark for ROH or RX to alkene then Br₂ test. If reagent is wrong or missing, no mark for that test; if wrong but close/incomplete, lose reagent mark but can award for correct observation. In each test, penalise each example of wrong chemistry, eg AgClr₂

propan-1-ol

acidified potassium dichromate

sodium

Named acid + conc H₂SO₄

named acyl chloride

PCI₅

M1

1

(orange) turns green

effervescence

Sweet smell

Sweet smell /misty fumes

Mr Cole Chemistry

	Misty fumes		
		1	M2
prop	anal		
	add Tollens or Fehlings / Benedicts		
	acidified potassium dichromate		
	Bradys or 2,4-dnph if dichromate used for alcohol cannot be used for aldehyde		
		1	М3
	Tollens: silver mirror or Fehlings/ Benedicts: red ppt		
	(orange) turns green		
	Yellow or orange ppt		
		1	M4
prop	anoic acid		
	Named carbonate/ hydrogencarbonate		
	water and UI (paper)		
	Named alcohol + conc H ₂ SO ₄		
	sodium or magnesium		
	PCI ₅		
	if sodium used for alcohol cannot be used for acid		
		1	M5
	effervescence		
	orange/red		
	Sweet smell		
	effervescence		
	Misty fumes if PCl₅ used for alcohol cannot be used for acid		

1

	1-chloro propane		
	NaOH then acidified AgNO ₃		
	AgNO₃ If acidification missed after NaOH, no mark here but allow mark for observation		
		1	M7
	white ppt		
	white ppt		
		1	M8
(b)	oxidation (of alcohol by oxygen in air)		
		1	M1
	absorption at <u>1680 -1750</u> (due to C=O)		
	Must refer to the spectrum		Mo
		1	M2
	comparison of polarity of molecules or correct imf statement: propanone is less polar OR propan-2-ol is more polar OR propanone has dipole-dipole forces OR propan-2-ol has hydrogen bonding		
		1	M3
	about attraction to stationary phase or solubility in moving phase Propan-2-ol has greater affinity for stationary phase or vice versa OR propanone is more soluble in solvent/moving phase or vice versa		
		-	M4
		1	[12]