


Question 5

		Answer	Marks
(a)	i)	<p>It must be clear from the structure that arsine is not planar. Structures similar to those shown below would be acceptable:</p>	1
	ii)	$4\text{AsH}_3 + 3\text{O}_2 \rightarrow 4\text{As} + 6\text{H}_2\text{O}$	1
(b)	i)	As_2O_3	1
	ii)	$\text{As}_2\text{O}_3 + 6\text{Zn} + 6\text{H}_2\text{SO}_4 \rightarrow 2\text{AsH}_3 + 6\text{ZnSO}_4 + 3\text{H}_2\text{O}$	1
(c)	i)	+5 or (V)	1

	ii)	<p>Both the bonding and geometry must be clear, structures such as those shown below would be acceptable:</p>	1
(d)	i)	<p>From the graph the $t_{1/2}$ is 8 mins $k = \ln 2 / t_{1/2}$ therefore $k = 0.087 \text{ min}^{-1}$ (0.0014 s^{-1} or $0.144 \times 10^{-3} \text{ s}^{-1}$) Accept values for $t_{1/2}$ in the region of 7 to 9 mins ($k = 0.08$ to 0.1 min^{-1}) also accept correct values for k given in s^{-1}.</p>	1
	ii)	$[\text{HAsO}_4^{2-} \text{ (aq)}]_{t=0} = [\text{HAsO}_4^{2-} \text{ (aq)}]_0 \exp^{-(kt)}$ $10 = [\text{HAsO}_4^{2-} \text{ (aq)}]_0 \exp^{-(0.09 \times 55)}$ $[\text{HAsO}_4^{2-} \text{ (aq)}]_0 = 1400 \mu\text{g dm}^{-3}$ <p>For $k = 0.08 \text{ min}^{-1}$, $[\text{HAsO}_4^{2-} \text{ (aq)}]_0 = 800 \mu\text{g dm}^{-3}$ whilst for $k = 0.1 \text{ min}^{-1}$, $[\text{HAsO}_4^{2-} \text{ (aq)}]_0 = 2400 \mu\text{g dm}^{-3}$. Full marks should be given for values within this range.</p>	2
(e)		$[\text{HAsO}_4^{2-} \text{ (aq)}]_{t=0} = [\text{HAsO}_4^{2-} \text{ (aq)}]_{\text{eq}} + [\text{HAsO}_4^{2-} \text{ (adsorbed)}]_{\text{eq}}$ $\text{Therefore: } K = \frac{[\text{HAsO}_4^{2-} \text{ (aq)}]_{t=0} - [\text{HAsO}_4^{2-} \text{ (aq)}]_{\text{eq}}}{[\text{HAsO}_4^{2-} \text{ (aq)}]_{\text{eq}}}$ <p>Rearranges to give:</p> $[\text{HAsO}_4^{2-} \text{ (aq)}]_{\text{eq}} = \frac{[\text{HAsO}_4^{2-} \text{ (aq)}]_{t=0}}{1+K} = \frac{30}{1+186} = 0.16 \mu\text{g/dm}^3$	2