
## 3. This question is about halogen fluorides

Chlorine trifluoride, CIF<sub>3</sub>, is one of the most reactive substances known: it causes sand and asbestos to explode and it reacts with xenon. It has been investigated as a rocket fuel; its reactions with every known fuel are so fast that no ignition delay has ever been measured.



- (a) CIF<sub>3</sub> is used to turn uranium into uranium hexafluoride, UF<sub>6</sub>, which is used to separate the isotopes of uranium. Chlorine monofluoride, CIF, is a side-product in this reaction. Write a balanced equation for the reaction between uranium and chlorine trifluoride.
- **(b)** CIF<sub>3</sub> is a powerful oxidising agent. In the answer booklet circle each atom / ion on the left hand side of the equation that is oxidised in the reaction between chlorine trifluoride and silver chloride.

$$2AgCl(s) + 2ClF_3(l) \longrightarrow 2AgF_2(s) + Cl_2(g) + 2ClF(g)$$

lodine forms the fluorides IF, IF<sub>3</sub>, IF<sub>5</sub> and IF<sub>7</sub>. Their standard enthalpy changes of formation are shown in the table.

|                                                      | IF    | IF <sub>3</sub> | IF <sub>5</sub> | IF <sub>7</sub> |
|------------------------------------------------------|-------|-----------------|-----------------|-----------------|
| Δ <sub>f</sub> H <sup>⋄</sup> / kJ mol <sup>−1</sup> | -95.4 | -486            | -843            | -962.5          |

When the oxidation number of iodine is between 0 and +7 there is a possibility that it will disproportionate to the compound with iodine in its next highest oxidation number, and elemental iodine. For example,  $IF_3$  might disproportionate to give  $IF_5$  and  $I_2$ .

- (c) i) Give the equations for the theoretical disproportionation reactions of IF, IF<sub>3</sub> and IF<sub>5</sub>.
  - ii) Calculate the standard enthalpy change for each of these reactions.
  - iii) Only one of IF, IF<sub>3</sub> and IF<sub>5</sub>, does not disproportionate suggest which one.