

1. This question is about rocket fuel

Mark

State symbols not required

Accept any multiple with correct stoichiometry e.g., $2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}$

If the equation used is $\text{H}_2 + \frac{1}{2}\text{O}_2 \rightarrow \text{H}_2\text{O}$:

$$\Delta_r H = \sum_{\text{bonds broken (reactants)}} - \sum_{\text{bonds formed (products)}}$$

$$-241 \text{ kJ mol}^{-1} = [(432 + y) - (2 \times 460)] \text{ kJ mol}^{-1}$$

$$y = [-241 - 432 + (2 \times 460)] \text{ kJ mol}^{-1}$$

$$y = +247 \text{ kJ mol}^{-1} \text{ (for } \frac{1}{2} \text{ mole of O}_2\text{)}$$

$$1 \text{ mole of O}_2 \text{ is } 2y = +494 \text{ kJ mol}^{-1}$$

If the equation used is $2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}$:

$$\Delta_r H = \sum_{\text{bonds broken (reactants)}} - \sum_{\text{bonds formed (products)}}$$

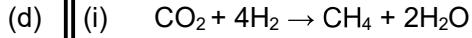
$$[2 \times -241] \text{ kJ mol}^{-1} = [(2 \times 432) + y - (4 \times 460)] \text{ kJ mol}^{-1}$$

$$y = [(2 \times -241) - (2 \times 432) + (4 \times 460)] \text{ kJ mol}^{-1}$$

$$y = +494 \text{ kJ mol}^{-1}$$

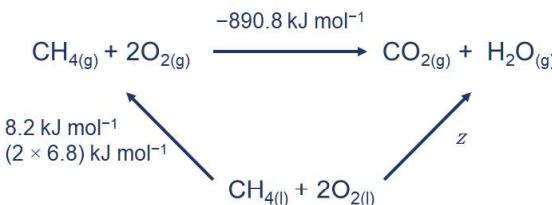
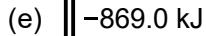
$$1 \text{ dm}^3 = 1000 \text{ cm}^3$$

$$\text{Density (p)} = \text{mass (m)} / \text{volume (v)}$$


$$m(\text{H}_2) = pv$$

$$m(\text{H}_2) = 0.071 \text{ g cm}^{-3} \times 1000 \text{ cm}^3 = 71 \text{ g}$$

$$n(\text{H}_2) = m/M_r = 71 \text{ g} / 2.016 \text{ g mol}^{-1} = 35.2 \text{ mol}$$



$$\text{Energy released} = 35.2 \text{ mol} \times +241 \text{ kJ mol}^{-1} = 8480 \text{ kJ}$$

(ii)	Oxidation state of H in reactant 0	Oxidation state of C in reactant +4
	Oxidation state of H in product +1	Oxidation state of C in product -4

All four oxidation states must be correct for the mark. + sign is not needed.

$$z = [+8.2 + (2 \times 6.8) + -890.8] \text{ kJ mol}^{-1} = -869.0 \text{ kJ mol}^{-1}, \text{ therefore } -869.0 \text{ kJ.}$$

No penalty if final answer in kJ mol^{-1} . No marks if value given in wrong units.

Total out of 7

7