1. This question is about a substitute for the perfume ingredient ambergris

Ambergris, a metabolic product of the sperm whale, was for many years one of the most valuable ingredients in fine fragrances. Recently, it has been replaced with synthetic equivalents such as Ambrox® which possesses a powerful amber-type fragrance. Many different research groups have proposed methods for synthesising Ambrox from natural products found in plants. A synthesis starting with (–)-drimenol extracted from the bark of the Chilean tree *Drimys winteri* is outlined below:

OH SCI + pyridine (a base) A KCN B
$$H^+/H_2O$$
 C $(a base)$ 90 % $C_{16}H_{28}O_3S$ 60 % $C_{16}H_{25}N$ 84 % $C_{16}H_{26}O_2$ (-)-drimenol p-toluenesulfonic acid $C_{16}H_{28}O_3$ $C_{16}H_{26}O_2$ $C_{16}H_{28}O_3$ $C_{16}H_{28}O_3$ $C_{16}H_{26}O_2$ $C_{16}H_{28}O_3$ $C_{16}H_{28}O_3$ $C_{16}H_{26}O_2$ $C_{16}H_{28}O_3$ $C_{16}H_{26}O_2$ $C_{16}H_{26}O_2$ $C_{16}H_{26}O_2$ $C_{16}H_{26}O_2$

- (a) Given that ten tonnes of Ambrox are produced every year, calculate the number of moles produced per year.
- **(b)** Draw the structures of compounds **A** to **D**.

The yield of each step in the synthesis is shown beside the arrows in the scheme.

- (c) (i) What is the overall percentage yield of Ambrox in this synthesis?
 - (ii) What mass of (–)-drimenol would be needed each year if all of the commercially synthesised Ambrox was made using this method?
 - (iii) Given that *Drimys winteri* bark contains 0.5 % by mass of (–)-drimenol calculate the mass of bark that would be needed each year if all of the commercially synthesised Ambrox was made using this method.