

1. Haloalkanes can undergo hydrolysis.

A student carries out an experiment to find the relative rate of hydrolysis of 1-chloropropane, C_3H_7Cl , 1-bromopropane, C_3H_7Br , and 1-iodopropane, C_3H_7I .

The student adds 2 cm^3 of ethanol to 2 cm^3 of aqueous silver nitrate to three test tubes labelled **A**, **B** and **C**.

The student adds 5 drops of a different haloalkane to each test-tube in rapid succession and shakes each tube. The student measures the time for a precipitate to form in each test-tube.

The results are shown below.

Test tube	Haloalkane	Time taken for reaction to take place
A	C_3H_7Cl	about half an hour
B	C_3H_7Br	a few minutes
C	C_3H_7I	a few seconds

i. Write an **ionic** equation involving aqueous silver nitrate for formation of **one** of the precipitates.

[1]

ii. What do the experimental results tell you about the carbon–halogen bond enthalpies?

[1]

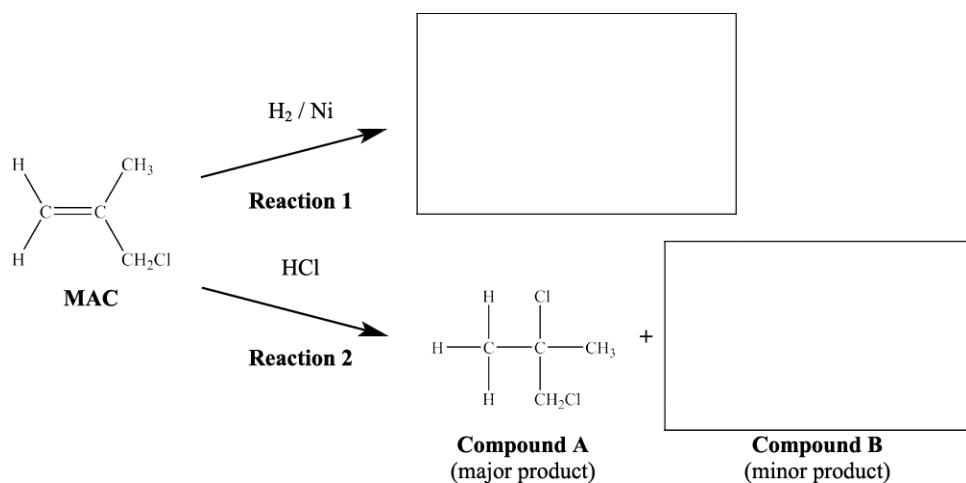
iii. How could the student modify their experiment so that it could be completed in less time?

[1]

2. CN^- ions react with haloalkanes and with carbonyl compounds.

Which row gives the correct mechanisms for the reactions?

	Reaction of CN^- with haloalkanes	Reaction of CN^- with carbonyl compounds
A	Electrophilic substitution	Electrophilic addition
B	Electrophilic substitution	Nucleophilic addition
C	Nucleophilic substitution	Electrophilic addition
D	Nucleophilic substitution	Nucleophilic addition


Your answer

[1]

3. Methyl allyl chloride, MAC, is a chemical used in the production of insecticides. The structure of MAC is shown below.

The flowchart below shows some reactions of MAC.

i. Complete the flowchart above.

- Draw the structure of the product of **Reaction 1**.
- Draw the structure of the minor organic product of **Reaction 2** (**Compound B**).

[2]

ii. **Reaction 2** creates a mixture of compounds. Compound **A** is the major product.

Draw the mechanism for the formation of compound **A**.

Use curly arrows and show relevant dipoles.

[3]

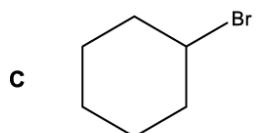
iii. Explain why compound **B** is the minor product of **Reaction 2**.

[1]

iv. **MAC** reacts with water in the presence of $\text{AgNO}_3(\text{aq})$ and ethanol.

Draw the structure of the organic product of this reaction.

State what you would **observe** in this reaction and identify the compound responsible for the observation.



[2]

4. An organic compound is heated with aqueous silver nitrate and ethanol.

A cream solid forms.

Which structure is most likely to be the organic compound?

Your answer

[1]

5. A chemist investigates the rate of hydrolysis of the haloalkanes.

Which of the following statements is / are true?

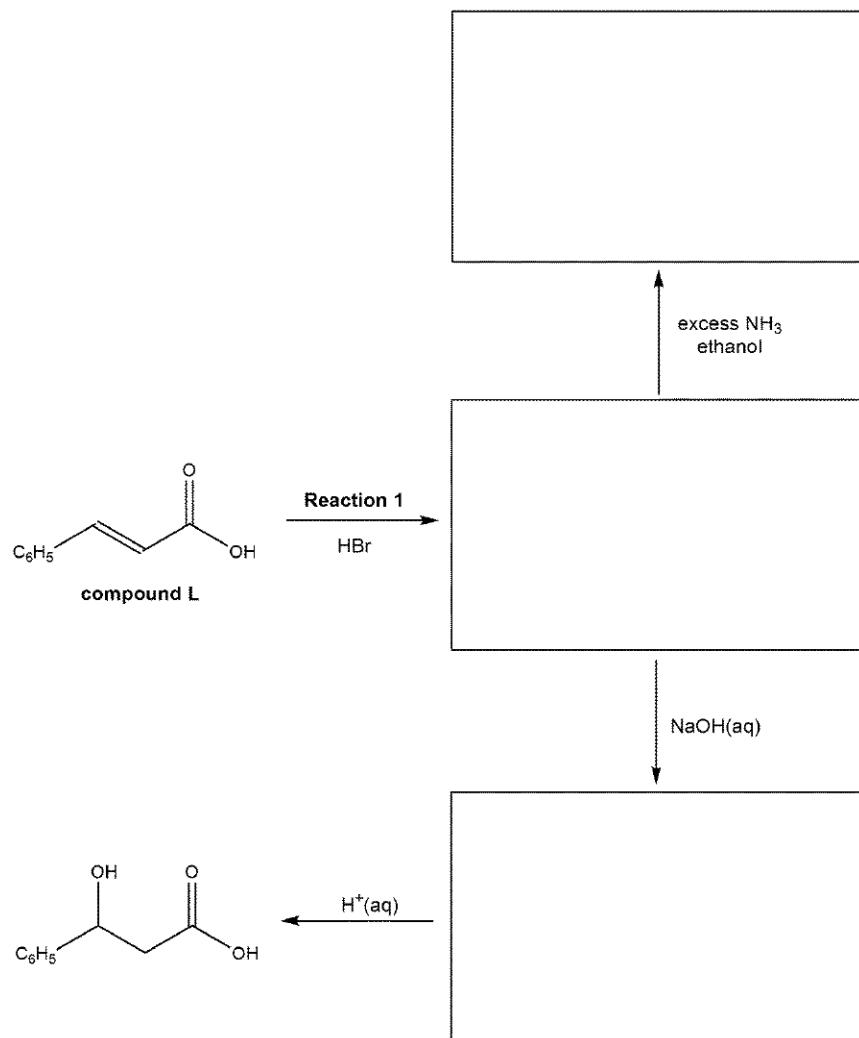
1: A fluoroalkane gives the slowest rate of hydrolysis.

2: The rate of reaction depends on the strength of the carbon–halogen bond.

3: The rate of reaction depends on the polarity of the carbon–halogen bond.

- A. 1, 2 and 3
- B. Only 1 and 2
- C. Only 2 and 3
- D. Only 1

Your answer

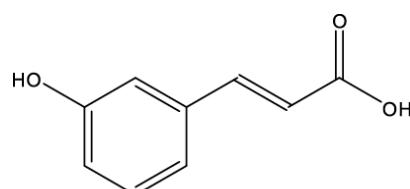

[1]

6(a). This question is about the reactions of compounds with more than one functional group.

A chemist investigates some reactions of compound L, as shown in the flowchart below.

Complete the flowchart by showing the missing organic structures in the boxes.

[3]



(b). Outline the mechanism that occurs in **Reaction 1**.

Include curly arrows, relevant dipoles and the name of the mechanism.

name of mechanism [4]

(c). The chemist synthesises compound **M**, which can undergo both addition and condensation polymerisation.

compound M

i. Draw the repeat unit of the **addition** polymer formed from compound **M**.

[1]

ii. Draw **two** repeat units of the **condensation** polymer formed from compound **M**.

[2]

7(a). Ethers are a homologous series of organic compounds containing the R–O–R functional group.

The structures and names of two ethers are shown in **Fig. 4.1**.

Fig. 4.1

Draw the **skeletal formula** of the ether, 2-ethoxy-3-methylbutane.

[1]

(b). Ethers can be prepared by nucleophilic substitution of haloalkanes with alkoxide ions, RO^- .

i. Alkoxide ions can be prepared by reacting sodium with an alcohol. A gas is also formed.

Write an equation for the formation of methoxide ions from sodium and an alcohol.

[1]

ii. Methoxyethane, shown in **Fig. 4.1**, can be prepared by reacting bromoethane, $\text{CH}_3\text{CH}_2\text{Br}$, with methoxide ions, CH_3O^- .

Suggest the mechanism for the nucleophilic substitution of $\text{CH}_3\text{CH}_2\text{Br}$ with CH_3O^- .

Show curly arrows, charges, relevant dipoles, and products.

[3]

iii. In this mechanism, explain how CH_3O^- ions have acted as a nucleophile.

State the type of bond fission that takes place.

[1]

(c). 2-Ethoxypropane, shown in **Fig. 4.1**, is analysed by ^1H NMR spectroscopy.

Complete the table to predict the ^1H NMR spectrum of 2-ethoxypropane.

You may **not** need to use all the rows.

Chemical shift, δ/ppm	Relative peak area	Splitting pattern

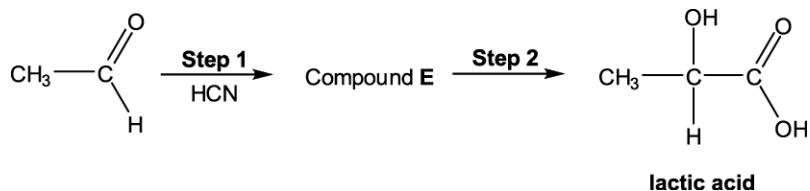
[4]

(d). In organic reactions, alkoxide ions can also act as a base.

The diagram below shows an incomplete mechanism for the reaction of a diester with methoxide ions, CH_3O^- (**Step 1**), followed by reaction of the intermediate with bromoethane (**Step 2**).

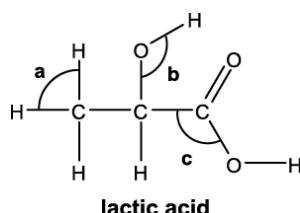
i. For **Step 1**, add curly arrows to show how CH_3O^- reacts with the diester to form the intermediate. In the box, draw the structure of the organic product formed in **Step 2**.

[3]


ii. Explain how CH_3O^- ions have acted as a base in this mechanism.

[1]

8(a). Lactic acid is a naturally occurring chemical, which can be synthesised from ethanal, CH_3CHO , as shown in the steps below.


i. Draw the structure for compound **E**.

[1]

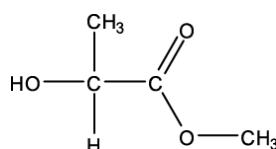
ii. Suggest a reagent that could be used for **Step 2**.

[1]

iii. The displayed formula of lactic acid is shown below.

Suggest a value for each bond angle **a–c**.

Bond angle **a**:

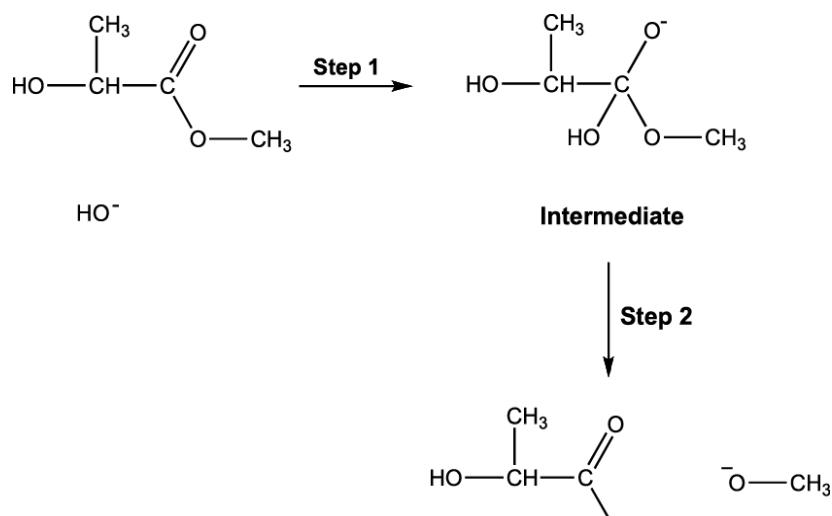

Bond angle **b**:

Bond angle **c**:

[2]

(b). Methyl lactate is an ester of lactic acid which is used as a solvent.

methyl lactate

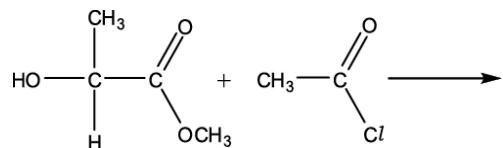

Methyl lactate can be hydrolysed by refluxing with sodium hydroxide solution.

In this reaction the hydroxide ion acts as a nucleophile.

i. Suggest how the hydroxide ion can act as a nucleophile.

[1]

ii. Part of the mechanism for the hydrolysis is shown below.


- Add relevant dipoles and curly arrows to show how the intermediate is formed in **Step 1** of the mechanism.
- Add curly arrows to show how the carboxylic acid and OCH_3^- ion are formed from the intermediate in **Step 2** of the mechanism.

[4]

iii. Methyl lactate can also react with ethanoyl chloride.

Complete the equation for this reaction.

[2]

9(a). 1-Bromobutane, $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Br}$, reacts with methoxide ions, CH_3O^- , by nucleophilic substitution.

Suggest how the methoxide ion can act as a nucleophile.

[1]

(b). Using the 'curly arrow' model, suggest the mechanism for this reaction.

Show any relevant dipoles.

[3]

(c). 1-Iodobutane also reacts with methoxide ions.

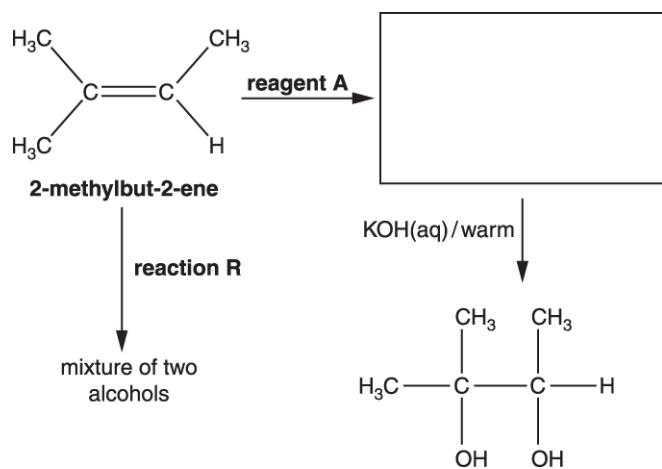
Indicate, by placing a tick in one of the boxes, how the use of 1-iodobutane would affect the rate of reaction compared with that of 1-bromobutane.

1-Iodobutane does not change the rate	<input type="checkbox"/>
1-Iodobutane increases the rate	<input type="checkbox"/>
1-Iodobutane decreases the rate	<input type="checkbox"/>

Explain your answer.

[1]

(d). The ethanoate ion, CH_3COO^- acts as a nucleophile when reacting with 1-bromobutane in a substitution reaction.


Draw the skeletal formula and give the name of the organic product formed in this reaction.

skeletal formula

name of product [2]

10(a). The flowchart shows how 2-methylbut-2-ene can be converted into a number of organic products.

Complete the flowchart by drawing an organic structure in the box below.

[1]

(b). Identify reagent A.

[1]

(c). In the flowchart, **reaction R** forms a mixture of two alcohols that are structural isomers of $C_5H_{12}O$.

i. State the reagents and conditions needed for **reaction R**.

[1]

ii. What is meant by the term *structural isomers*?

[1]

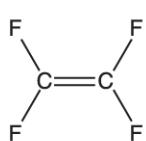
iii. Draw the two structural isomers of $C_5H_{12}O$ formed in **reaction R**.

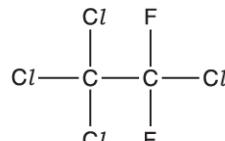
[2]

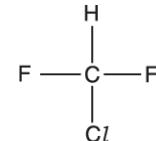
iv. Suggest why 2-methylbut-2-ene is less soluble in water than either of the structural isomers formed.

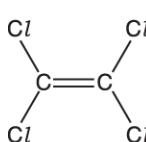
[2]

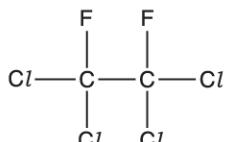
11. Give chemical explanations for the following statements.

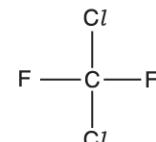

The rate of hydrolysis of 1-bromobutane is faster than that of 1-chlorobutane.

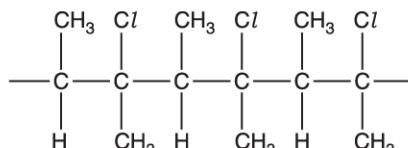

[1]


12. This question is about the compounds shown below.


B


C


D


E

F

G

H

Compound **G** was once used as a propellant in aerosols. Compound **G** has been linked with depletion of the ozone layer in the stratosphere.

i. State **two** properties that made compound **G** suitable for use as an aerosol.

1

2

[1]

ii. Explain the following statements, using equations where appropriate.

- Life on Earth benefits from the presence of an ozone layer.
- The concentration of ozone is maintained in the ozone layer.
- Compound **G** produces radicals which catalyse the breakdown of ozone.

[5]

iii. Alternative 'ozone-friendly' compounds are now used as propellants instead of compound **G**.

Which compound, **B** to **H**, might be suitable as an 'ozone-friendly' propellant?

[1]

13(a). Reaction mechanisms use curly arrows and can involve electrophiles and nucleophiles.

- i. What does a curly arrow represent in mechanisms?

Digitized by srujanika@gmail.com

[1]

ii. What is meant by the term *nucleophile*?

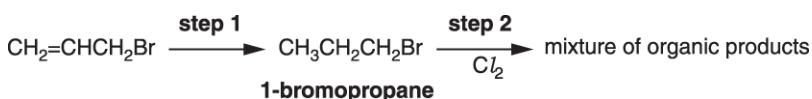
Digitized by srujanika@gmail.com

[1]

(b). Allyl bromide, $\text{CH}_2=\text{CHCH}_2\text{Br}$, reacts with aqueous sodium hydroxide.

i. Outline the mechanism of this reaction.

Include curly arrows, relevant dipoles and final product(s).


[3]

ii. Name the type of mechanism.

[1]

(c). Allyl bromide, $\text{CH}_2=\text{CHCH}_2\text{Br}$, is used in the production of polymers.

Allyl bromide is reacted as shown below.

i. State the reagents and conditions for **step 1**.

[1]

ii. In **step 2**, 1-bromopropane reacts with chlorine by radical substitution.

Outline the mechanism for the monochlorination of 1-bromopropane.

In your mechanism, you can show the formula of 1-bromopropane as $\text{C}_3\text{H}_7\text{Br}$.

Include the names of the three stages in this mechanism, state the essential conditions and all termination steps.

[5]

iii. Radical substitution produces a mixture of organic products.

Suggest **two** reasons why.

[2]

14. Nitrogen forms several different oxides.

N_2O is a useful anaesthetic and NO has been linked to the depletion of ozone in the stratosphere.

NO radicals catalyse the breakdown of ozone in the stratosphere.

Write **two** equations to show how NO radicals catalyse this breakdown.

[2]

15. A reaction sequence is shown below:

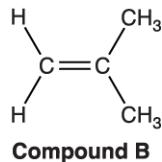
Which type of reaction mechanism is involved in each step?

	Step 1	Step 2
A	electrophilic addition	electrophilic substitution
B	electrophilic addition	nucleophilic substitution
C	nucleophilic addition	electrophilic substitution
D	nucleophilic addition	nucleophilic substitution

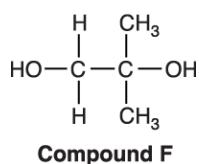
Your answer

[1]

16. When heated with NaOH(aq), 1-iodobutane is hydrolysed at a much faster rate than 1-chlorobutane.


Which statement explains the different rates?

- A The C–I bond enthalpy is greater than the C–C/ bond enthalpy.
- B The C–I bond is less polar than the C–C/ bond.
- C The C–I bond has a C atom with a greater $\delta+$ charge than in the C–C/ bond.
- D The C–I bond requires less energy to break than the C–C/ bond.

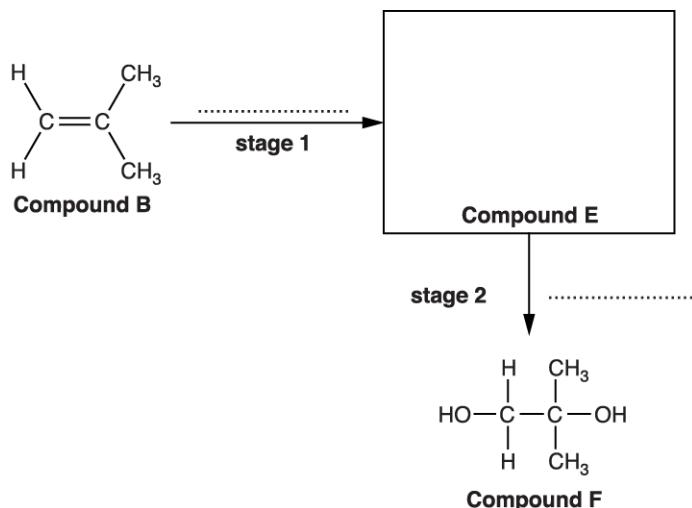

Your answer

[1]

17. Compound **B**, shown below, can be used to synthesise organic compounds with different functional groups.

The structure of compound **F** is shown below.

- i. What is the empirical formula of compound **F**?


[2]

ii. A student plans a two-stage synthesis for preparing compound **F** from compound **B**.

The synthesis first prepares compound **E**, as shown in the flowchart.

Draw the structure of compound **E** in the box and state the reagents for each stage on the dotted lines.

[3]

18. Alcohols can be prepared from halogenoalkanes. 2,2-dimethylpropan-1-ol can be prepared by hydrolysis of a chloroalkane with aqueous sodium hydroxide.

i. Write the equation for this reaction.

Use structures for the organic compounds.

[1]

ii. Outline the mechanism for this reaction.

Show curly arrows and relevant dipoles.

[2]

19. In the stratosphere, nitrogen oxides can catalyse the breakdown of ozone.

i. State **two** sources of nitrogen oxides in the stratosphere.

Digitized by srujanika@gmail.com

[1]

ii. Write equations to show how nitrogen monoxide catalyses the breakdown of ozone.

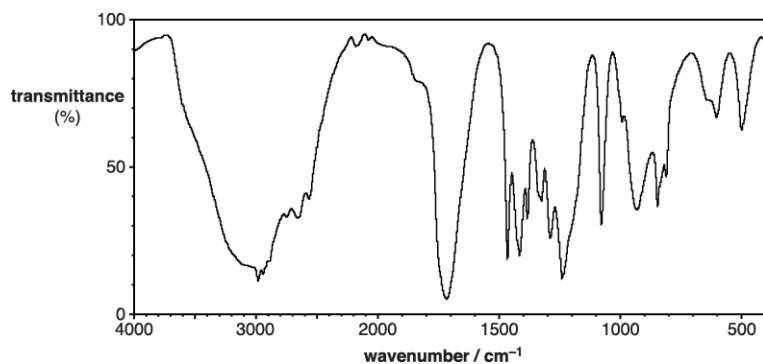
Digitized by srujanika@gmail.com

[2]

20(a). A student was provided with a mixture of two structural isomers. Each isomer has the percentage composition by mass C, 29.29%; H, 5.70%; Br, 65.01%. The relative molecular mass of each isomer is less than 150.

Determine the structures of the two structural isomers.

Show your working.


In your answer you should link the evidence with your explanation.

[5]

(b). The student heats the mixture of the two structural isomers from **(a)** under reflux with aqueous sodium hydroxide to form two compounds, **E** and **F**. The student separates the two compounds.

Compound **E** is heated under reflux with acidified potassium dichromate(VI) to form compound **G**, which gives the infrared spectrum below.

i. Analyse the information and spectrum to determine the structures of **E**, **F** and **G**.

Include an equation for the formation of **G** from **E**.

In your answer you should link the evidence with your explanation.

[6]

ii. Compound **G** is heated with compound **F** in the presence of a small amount of concentrated sulfuric acid to form organic compound **H**.

Draw the structure of the organic compound **H**.

[2]

21(a). Haloalkanes are hydrolysed by aqueous sodium hydroxide.

i. Outline the mechanism of the reaction of 1-bromobutane with aqueous sodium hydroxide.

Include curly arrows, relevant dipoles and the structure of the organic product.

[3]

ii. Name the type of mechanism in (i).

[1]

iii. The organic product in (i) can be formed faster using a different haloalkane than 1-bromobutane.

Identify this haloalkane.

Explain your answer.

Haloalkane

.....

Explanation

.....

[1]

(b). The use of some haloalkanes, such as chlorotrifluoromethane, has been banned as they form $\text{Cl}\cdot$ radicals which break down ozone.

i. Construct an equation to show the formation of $\text{Cl}\cdot$ radicals from chlorotrifluoromethane.

[1]

ii. Ozone is broken down by $\text{Cl}\cdot$ radicals in a two-step process.

Write the equations for the two steps and the overall equation for this process.

Step 1

Step 2

Overall equation

[3]

iii. A research chemist found that 1.00 g of $\text{Cl}\cdot$ radicals can breakdown 135 kg of O_3 .

Calculate the number of O_3 molecules removed by one $\text{Cl}\cdot$ radical.

Give your answer in **standard form** and to **three** significant figures.

number of O_3 molecules = [3]

22. A chemist compares the rates of hydrolysis of 1-chloropropane and 1-bromopropane in ethanol.

Which reagent in aqueous solution should be used?

- A Silver chloride
- B Silver nitrate
- C Potassium chloride
- D Potassium nitrate

Your answer

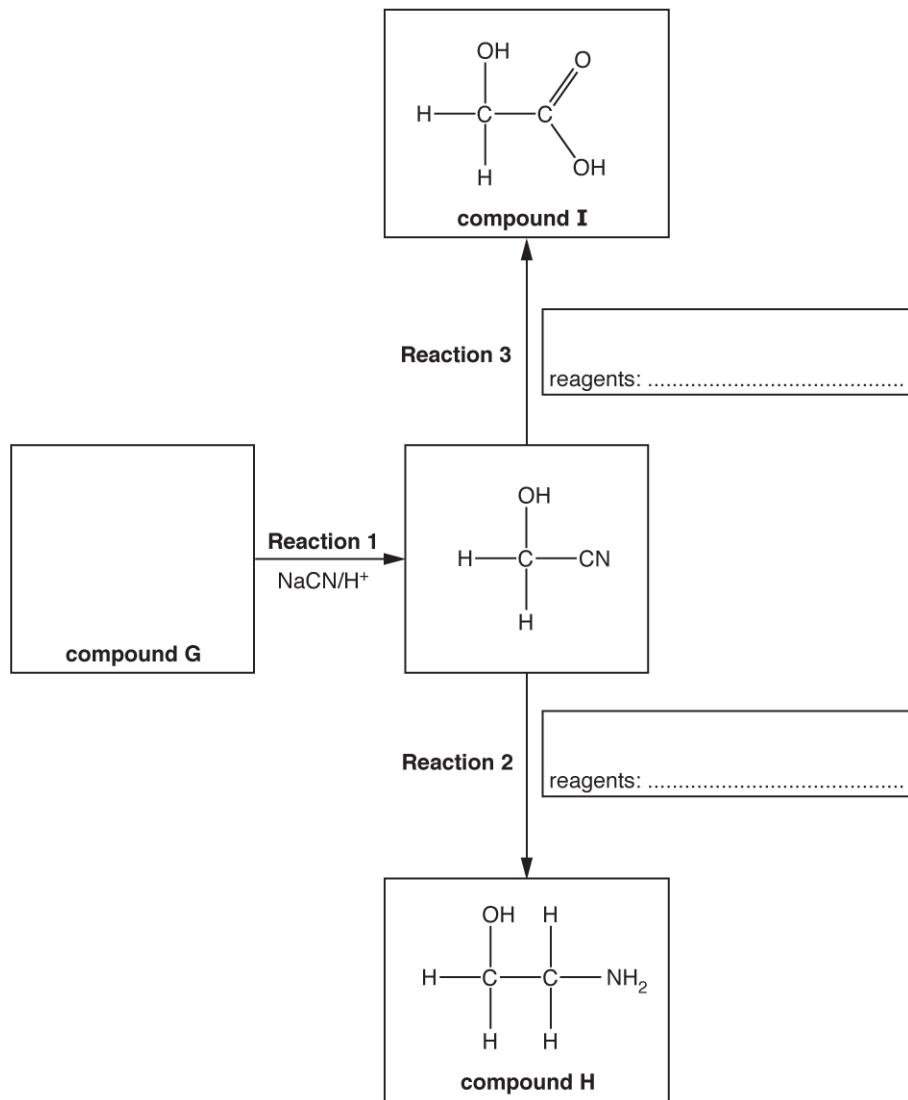
[1]

23. This question is about organic compounds containing nitrogen.

Sodium cyanide, NaCN , can be reacted with many organic compounds to increase the length of a carbon chain.

i. 1-Chloropropane, $\text{CH}_3\text{CH}_2\text{CH}_2\text{Cl}$, reacts with ethanolic sodium cyanide by nucleophilic substitution.

Outline the mechanism for this reaction.


Include curly arrows, relevant dipoles and the structure of the organic product.

[3]

ii. Compound **G** is used to synthesise compounds **H** and **I** as shown in the flowchart below.

Complete the flowchart showing the structure of compound **G** and the **formulae** of the reagents for **Reaction 2** and **Reaction 3**.

[3]

iii. Compound **H** reacts with dilute hydrochloric acid to form a salt.

Explain why compound **H** can react with dilute hydrochloric acid and suggest a structure for the salt formed.

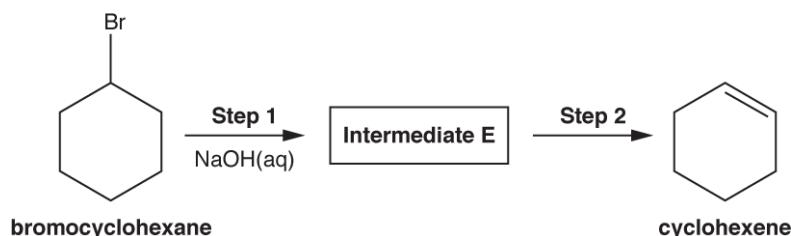
Explanation

Structure

iv.

[2]

v. Compound **I** is the monomer for the biodegradable polymer **J**.
Draw **two** repeat units of polymer **J** and suggest a reason why it is biodegradable.



[3]

24. Organic compounds can be prepared in the laboratory using synthetic routes with two or more stages.

A student devises a two-stage synthesis of cyclohexene from bromocyclohexane.

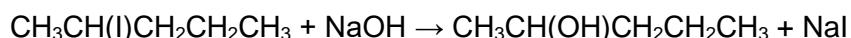
i. Suggest the structure of **intermediate E** and the reagent(s) and conditions for **step 2**.

reagent(s) and
conditions

[2]

ii.

iii. The student carries out this synthesis and obtains 1.23 g of pure cyclohexene from 5.50 g of bromocyclohexane.


Calculate the percentage yield of cyclohexene.

Give your final answer to an **appropriate** number of significant figures.

percentage yield = % [3]

25. Alcohols are used in organic synthesis.

Pentan-2-ol can be prepared by the alkaline hydrolysis of 2-iodopentane.

The reaction mixture is boiled for 20 minutes.

i. State the most appropriate technique that could be used to boil the reaction mixture for 20 minutes.

[1]

ii. Describe the mechanism for the alkaline hydrolysis of 2-iodopentane.

In your answer, include the name of the mechanism, curly arrows and relevant dipoles.

name of mechanism:

[4]

26. Which compound does **not** react with nucleophiles?

- A $\text{CH}_3\text{CH}_2\text{CHO}$
- B CH_3CHCH_2
- C $\text{CH}_3\text{CH}_2\text{COCH}_3$
- D $\text{CH}_3\text{CH}_2\text{CH}_2\text{Cl}$

Your answer

[1]

27. The breakdown of ozone is catalysed by NO radicals.

Which equation is a propagation step in the mechanism for this process?

- A $\text{NO} + \text{O}_2 \rightarrow \text{N} + \text{O}_3$
- B $\text{NO} + \text{O}_2 \rightarrow \text{NO}_2 + \text{O}$
- C $\text{N} + \text{O}_3 \rightarrow \text{NO} + \text{O}_2$
- D $\text{NO}_2 + \text{O} \rightarrow \text{NO} + \text{O}_2$

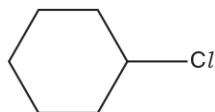
Your answer

[1]

28(a). This question is about the hydrolysis of haloalkanes.

The rate of hydrolysis of a haloalkane depends on the halogen present.

State and explain how the halogen in the haloalkane affects the rate of hydrolysis.


[2]

(b). Chlorocyclohexane is hydrolysed with aqueous sodium hydroxide.

Outline the mechanism for this reaction.

Show curly arrows, relevant dipoles and the products.

[3]

(c). A student hydrolyses a haloalkane, **E**, using the following method.

- 0.0100 mol of haloalkane **E** is refluxed with excess NaOH(aq) to form a reaction mixture containing an organic product **F**.
- The reaction mixture is neutralised with dilute nitric acid.
- Excess AgNO₃(aq) is added to the reaction mixture. 1.88 g of a precipitate **G** forms.

Organic product, **F**, has a molar mass of 74.0 g mol⁻¹ and has a chiral carbon atom.

- Draw a **labelled** diagram to show how the student would carry out the hydrolysis of haloalkane **E**.

[2]

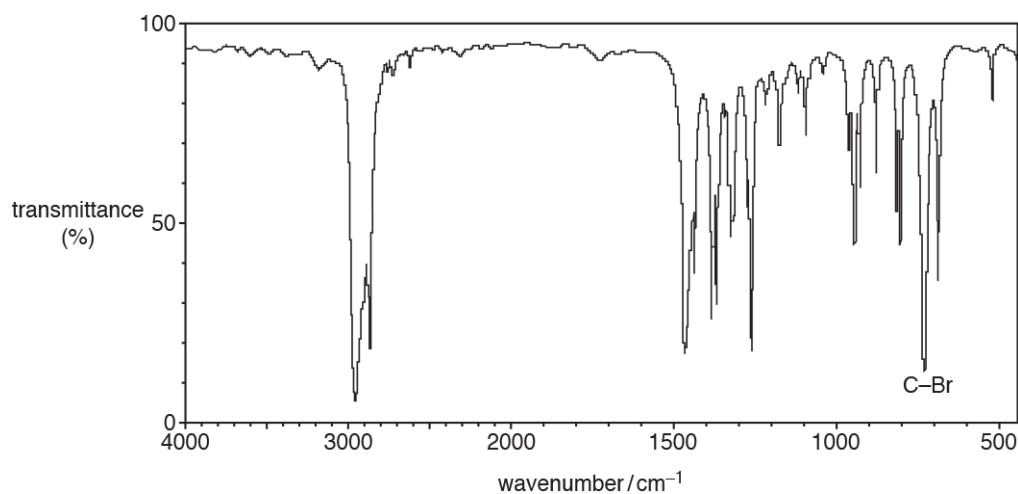
ii. Analyse the information to identify **E**, **F** and **G**.

Show your working.

[3]

29. An alcohol can be prepared by hydrolysing the haloalkane $C_2H_5CHBrCH_3$ with aqueous sodium hydroxide.

i. Outline the mechanism for this reaction.


Show curly arrows and relevant dipoles.

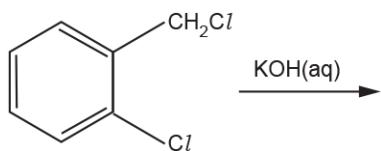
[3]

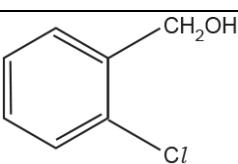
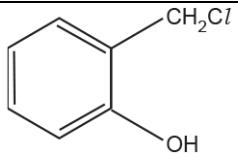
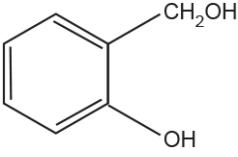
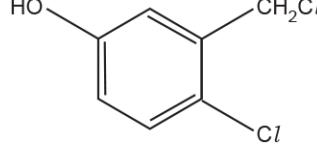
ii.

iii. The infrared (IR) spectrum for $C_2H_5CHBrCH_3$ is shown in **Fig. 25.2**.
The C–Br bond absorption is labelled.

Fig. 25.2

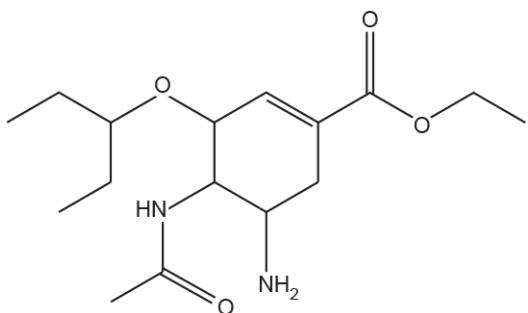
Outline how IR spectroscopy could be used to show that the bromoalkane functional group has reacted and that the alcohol functional group has formed.



[2]

30. What is the organic product of the reaction below?


A	
B	
C	
D	

Your answer

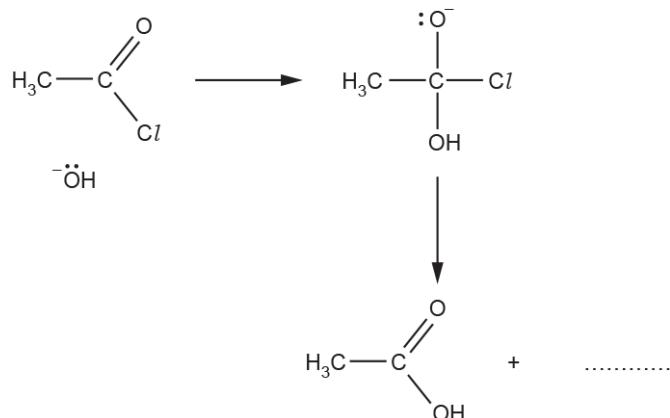
[1]

31. The structure of a compound used to treat influenza is shown below.

Which functional group(s) is/are in a molecule of the compound?

- 1 Ester
- 2 Secondary amide
- 3 Ketone

- A 1, 2 and 3
- B Only 1 and 2
- C Only 2 and 3
- D Only 1


Your answer

[1]

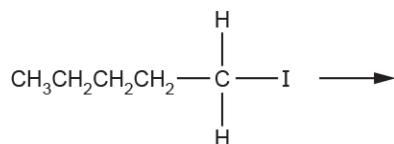
32. An incomplete reaction mechanism is shown below.

i. Complete the mechanism by adding curly arrows and any missing species.

[4]

ii. What is the role of OH^- in this mechanism?

[1]



33. This question is about 1-iodopentane, $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{I}$.

1-Iodopentane can be hydrolysed by aqueous sodium hydroxide.

i. Outline the mechanism for this reaction.

Include curly arrows, relevant dipoles and the final product(s).

[3]

ii. 1-Iodopentane can also be hydrolysed by water using aqueous silver nitrate, with ethanol as the solvent.

A student uses this method to compare the rates of hydrolysis of 1-iodopentane and 1-bromopentane.

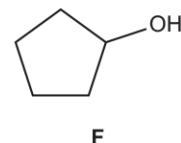
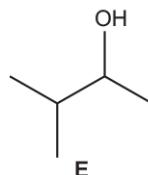
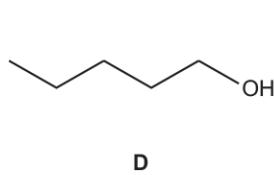
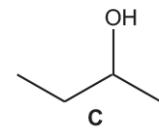
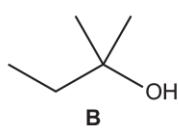
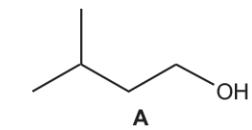
What measurement and observation would allow the student to compare the rates of hydrolysis?

[1]

iii. 1-Iodopentane was found to react faster than 1-bromopentane.

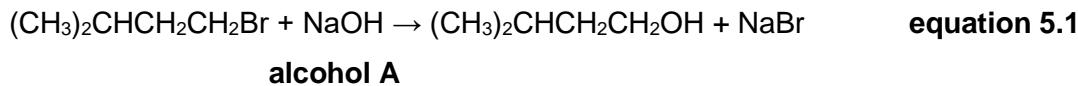
Explain why.

[2]







34. Which row describes a nucleophile?

A	electron pair donor	attracted to high electron density
B	electron pair donor	attracted to low electron density
C	electron pair acceptor	attracted to high electron density
D	electron pair acceptor	attracted to low electron density

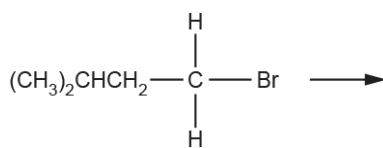
Your answer


[1]

35(a). This question is about the alcohols **A–F** shown below.

Alcohol **A** can be prepared by the alkaline hydrolysis of the bromoalkane, $(\text{CH}_3)_2\text{CHCH}_2\text{CH}_2\text{Br}$.

The hydrolysis with aqueous NaOH is shown in **equation 5.1**.


A student gently heats a mixture of $(\text{CH}_3)_2\text{CHCH}_2\text{CH}_2\text{Br}$ and $\text{NaOH}(\text{aq})$ for 25 minutes.

i. Calculate the atom economy for the preparation of alcohol **A** in **equation 5.1**.

atom economy = % [2]

ii. Outline the mechanism for the alkaline hydrolysis of $(\text{CH}_3)_2\text{CHCH}_2\text{CH}_2\text{Br}$.
The structure of $(\text{CH}_3)_2\text{CHCH}_2\text{CH}_2\text{Br}$ has been provided.

Show curly arrows, relevant lone pairs and dipoles, and the products.

[3]

iii. Name this type of mechanism.

[1]

(b). The student decides to prepare alcohol **A** using the same method as in the part above but using the chloroalkane $(\text{CH}_3)_2\text{CHCH}_2\text{CH}_2\text{Cl}$ instead of the bromoalkane, $(\text{CH}_3)_2\text{CHCH}_2\text{CH}_2\text{Br}$.

State and explain how the rates of hydrolysis of the chloroalkane and the bromoalkane would differ.

[2]

36. Which of the following reactions produce propan-1-ol?

- 1 The alkaline hydrolysis of 1-chloropropane.
- 2 The acid hydrolysis of propyl methanoate.
- 3 The acid hydrolysis of propanenitrile.

A 1, 2 and 3
B Only 1 and 2
C Only 2 and 3
D Only 1

Your answer

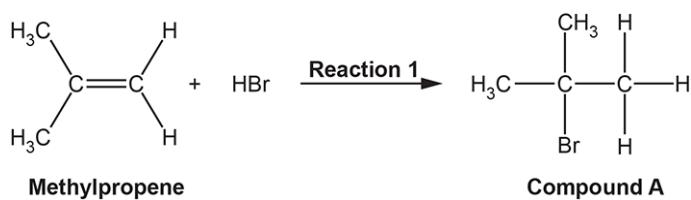
[1]

37. Which statement about absorption of radiation is correct?

A Absorption of IR radiation can break covalent bonds, forming radicals.

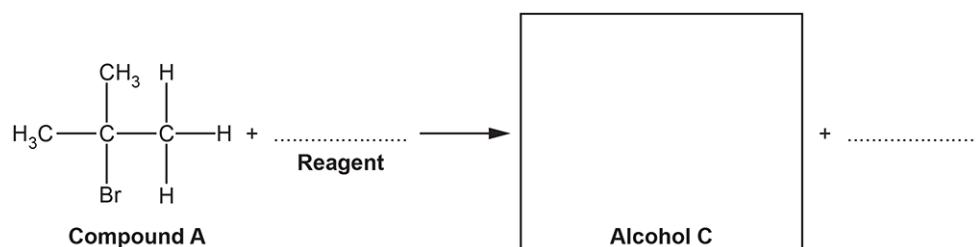
B Absorption of IR radiation causes covalent bonds to vibrate more.

C Absorption of UV radiation is a major cause of global warming and climate change.


D Absorption of UV radiation is used in modern breathalysers to measure ethanol in the breath.

Your answer

[1]


38. A student reacts methylpropene with hydrogen bromide, HBr, as shown in **Reaction 1**.

Compound A can be refluxed with a reagent to make alcohol C.

i. Choose a reagent for this reaction and complete the equation for this reaction.

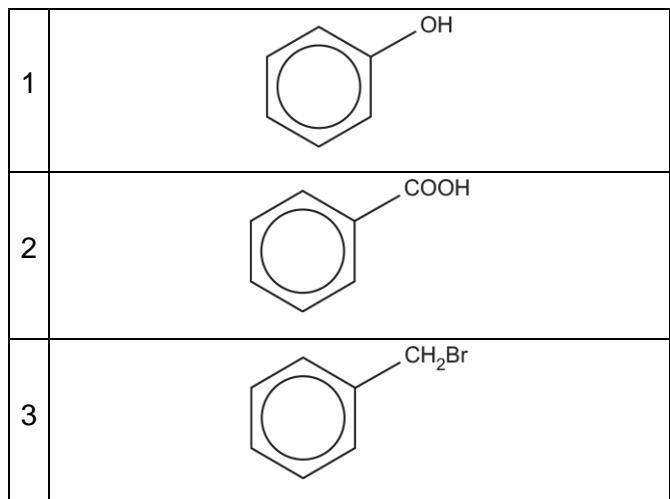
Your equation should show the structure of alcohol C.

[2]

ii. Draw a labelled diagram to show how you would set up apparatus for reflux.

[2]

39. Which reaction is **not** a reduction?


- A $\text{C}_6\text{H}_5\text{NO}_2 \rightarrow \text{C}_6\text{H}_5\text{NH}_2$
- B $\text{CH}_3\text{CN} \rightarrow \text{CH}_3\text{CH}_2\text{NH}_2$
- C $\text{CH}_3\text{CH}_2\text{Cl} \rightarrow \text{CH}_3\text{CH}_2\text{NH}_2$
- D $\text{CH}_3\text{COCH}_3 \rightarrow \text{CH}_3\text{CHOHCH}_3$

Your answer

[1]

40. Compounds **1**, **2** and **3** are heated with $\text{NaOH}(\text{aq})$.

Which compound(s) react(s)?

- A 1, 2 and 3
- B Only 1 and 2
- C Only 2 and 3
- D Only 1

Your answer

[1]

41. This question is about haloalkanes and polymers.

Freon-13, is a CFC with the molecular formula CClF_3 .

In the upper atmosphere, the presence of Freon-13 can lead to ozone depletion.

Explain, with the aid of equations, how Freon-13 can lead to this ozone depletion.

Use 'dots' (•) to show the position of unpaired electrons.

[3]

42. The ester, methyl ethanoate, can be synthesised by reacting a haloalkane with a carboxylate ion.

The mechanism is nucleophilic substitution.

Outline the mechanism for this reaction.

[3]

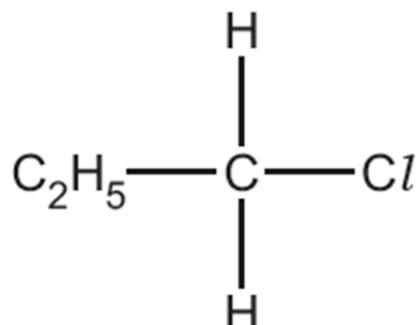
43. When heated with NaOH(aq), 1-chlorobutane is hydrolysed at a slower rate than 1-bromobutane.

Which statement explains the different rates?

- A The C–Br bond enthalpy is greater than the C–C/bond enthalpy.
- B The C–Br bond enthalpy is less than the C–C/bond enthalpy.
- C The C–Br bond is less polar than the C–C/bond.
- D The C–Br bond is more polar than the C–C/bond

Your answer

[1]


44. This question is about haloalkanes.

1-Chloropropane, $C_2H_5CH_2Cl$, can be hydrolysed with aqueous sodium hydroxide, NaOH.

Outline the mechanism for this reaction.

The structure of 1-chloropropane has been provided.

Show curly arrows, relevant dipoles and product(s).

[3]

45. Which statement is correct for the different rates of hydrolysis of RCl and RBr ?

- A RBr is hydrolysed faster because Cl is more electronegative than Br.
- B RBr is hydrolysed faster because the C–Cl bond enthalpy is greater than C–Br.
- C RCl is hydrolysed faster because Cl is more electronegative than Br.
- D RCl is hydrolysed faster because the C–Br bond enthalpy is greater than C–Cl.

Your answer

[1]

46. Which statement about absorption of radiation is correct?

- A Infrared radiation can result in the breakdown of the ozone layer.
- B Ultraviolet radiation can cause some polymers to photodegrade to benefit the environment.
- C Ultraviolet radiation is linked to global warming.
- D Ultraviolet radiation is used in modern breathalysers to measure ethanol in the breath.

Your answer

[1]

47. Which species could react as a nucleophile?

- 1 NH_3
- 2 OH^-
- 3 CH_3NH_2

- A 1, 2 and 3
- B Only 1 and 2
- C Only 2 and 3
- D Only 1

Your answer

[1]

48. * Carbon-carbon bond formation is used in synthesis to increase the length of a carbon chain.

Describe the formation of carbon–carbon bonds in aliphatic compounds by **two** different mechanisms.

Your answer should include mechanisms for each aliphatic compound.

Additional answer space if required.

[6]

49. Butan-1-ol reacts with sodium bromide and sulfuric acid to form 1-bromobutane by nucleophilic substitution.

The mechanism for this reaction takes place by two steps.

Step 1 The oxygen atom of the alcohol group accepts a proton to form a positively- charged intermediate.

Step 2 Bromide ions react with the intermediate from **Step 1** by nucleophilic substitution to form 1-bromobutane.

Show both steps in this mechanism.

[4]

50(a). This question is about halogens and halogen compounds.

A student is studying the hydrolysis of haloalkanes.

The equation for the alkaline hydrolysis of 2-bromopropane, $\text{CH}_3\text{CHBrCH}_3$, is shown below.

Use the curly arrow model to outline the mechanism for the alkaline hydrolysis of 2-bromopropane.

Show relevant dipoles and lone pairs, and name the mechanism.

name of mechanism [3]

(b). The student sets up an experiment to compare the rates of hydrolysis of 2-bromopropane and 2-iodopropane.

The student uses the method below.

Step 1 Place two test tubes, both containing aqueous silver nitrate and ethanol, in a water bath at 60 °C.

Step 2 Add five drops of 2-bromopropane to one test tube and five drops of 2-iodopropane to the other test tube.

Step 3 Record the time taken for a precipitate to appear in each test tube.

i. Complete the table below to show the formula and colour of each precipitate formed.

Haloalkane	Formula of precipitate	Colour of precipitate
2-bromopropane		
2-iodopropane		

[2]

ii. Predict which precipitate would form first and explain the difference in the rates of hydrolysis of 2-bromopropane and 2-iodopropane.

[1]

51. A student has planned the two-stage synthesis shown below.

Which compound could be the intermediate for this synthesis?

A	$ \begin{array}{c} \text{H} & \text{H} \\ & \\ \text{H}_3\text{C} - \text{C} - \text{C} - \text{H} \\ & \\ \text{CH}_3 & \text{H} \end{array} $
B	$ \begin{array}{c} \text{Br} & \text{H} \\ & \\ \text{H}_3\text{C} - \text{C} - \text{C} - \text{H} \\ & \\ \text{CH}_3 & \text{H} \end{array} $
C	$ \begin{array}{c} \text{OH} & \text{H} \\ & \\ \text{H}_3\text{C} - \text{C} - \text{C} - \text{H} \\ & \\ \text{CH}_3 & \text{H} \end{array} $
D	$ \begin{array}{c} \text{Br} & \text{Br} \\ & \\ \text{H}_3\text{C} - \text{C} - \text{C} - \text{H} \\ & \\ \text{CH}_3 & \text{H} \end{array} $

Your answer

[1]

52. A student investigates the rate of hydrolysis of different iodoalkanes using aqueous silver nitrate in ethanol.

What colour of precipitate is seen?

- A Brown
- B Cream
- C White
- D Yellow

Your answer

[1]

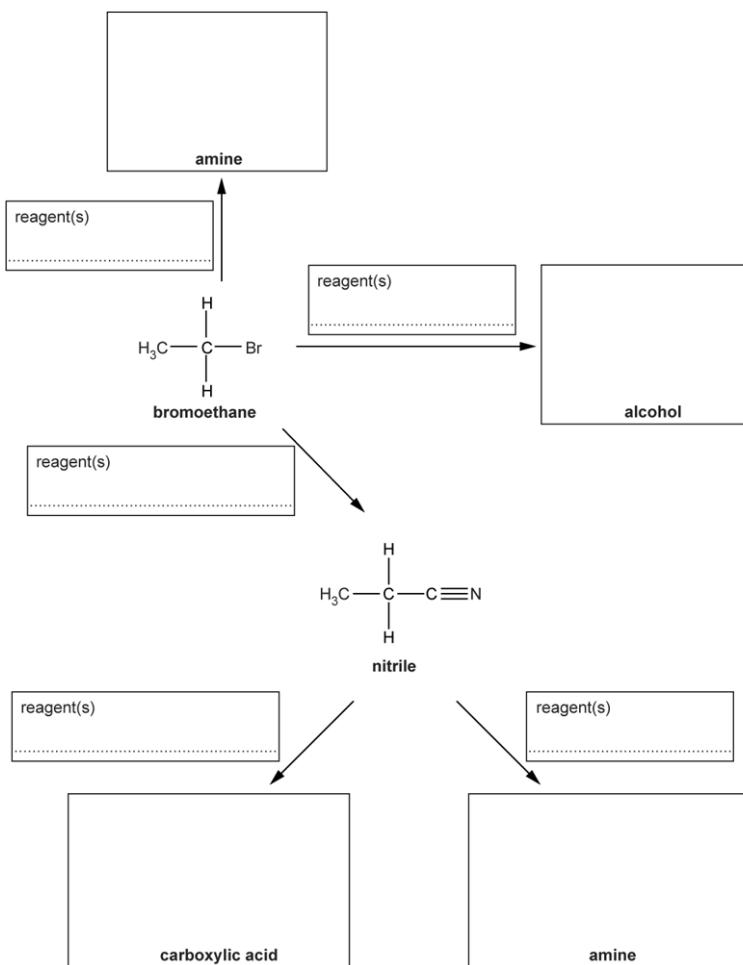
53. Which statement gives a valid scientific reason for global warming?

- A Infrared radiation causes bonds in CH_4 molecules to vibrate more.
- B Infrared radiation causes O_2 molecules to vibrate more.
- C Ultraviolet radiation causes bonds in CO_2 to vibrate more.
- D Ultraviolet radiation causes bonds in CFC molecules to break.

Your answer

[1]

54. The CFC CCl_2F_2 can cause the breakdown of ozone in the upper atmosphere.


Which initiation step could occur with ultraviolet radiation to catalyse this breakdown?

- A $\text{CCl}_2\text{F}_2 \rightarrow \cdot\text{C} + \cdot\text{Cl}_2\text{F}_2$
- B $\text{CCl}_2\text{F}_2 \rightarrow \cdot\text{F} + \cdot\text{CCl}_2\text{F}$
- C $\text{CCl}_2\text{F}_2 \rightarrow \cdot\text{Cl} + \cdot\text{CClF}_2$
- D $\text{CCl}_2\text{F}_2 \rightarrow \cdot\text{Cl}_2 + \cdot\text{CF}_2$

Your answer

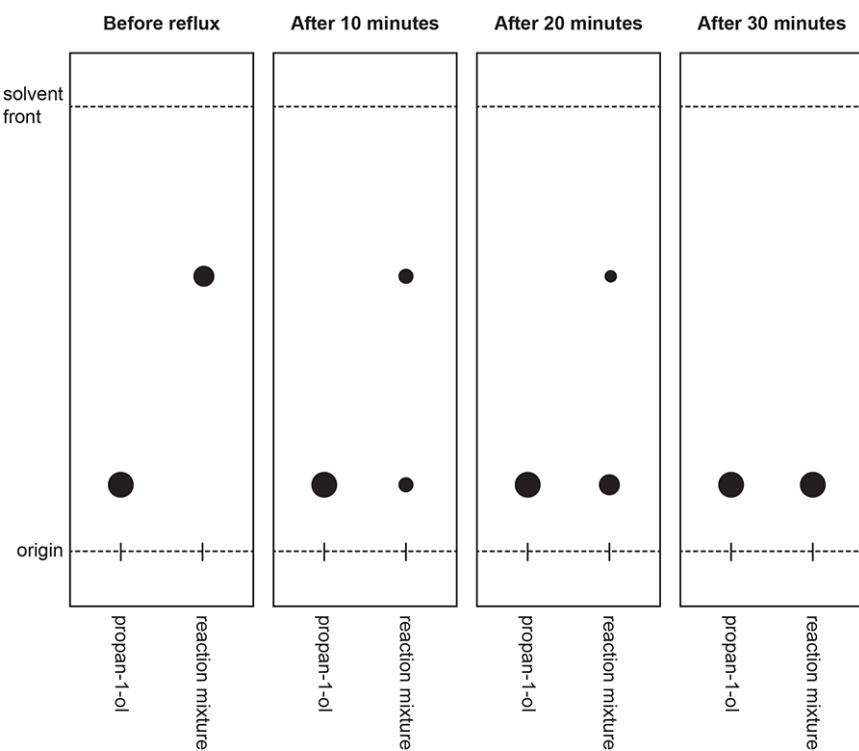
[1]

55. Complete the flowchart by filling in each box.

[9]

56. This question is about the analysis of organic compounds.

A student investigates the alkaline hydrolysis of 1-bromopropane as outlined below.


Step 1 The student adds 1-bromopropane to an excess of aqueous potassium hydroxide, KOH(aq), in a pear-shaped flask.

Step 2 A TLC chromatogram is run using propan-1-ol and the reaction mixture.

The reaction mixture is refluxed.

Step 3 A TLC chromatogram of the reaction mixture is run every 10 minutes.

The TLC chromatograms are shown below

i. Determine the R_f value of propan-1-ol.

Show your working.

$R_f = \dots$ [1]

ii. Write an equation for the alkaline hydrolysis of 1-bromopropane.

Show structures of organic compounds.

[1]

iii. A student investigates the alkaline hydrolysis of 1-chloropropane using the same method as for 1-bromopropane.

Predict, with reasons, how the appearance of the reaction mixture in the chromatogram produced after 20 minutes would be different when 1-chloropropane is used instead of 1-bromopropane.

Suggest why propan-1-ol is run alongside the reaction mixture.

[3]

57. Alcohols can be prepared by the hydrolysis of haloalkanes with aqueous alkali.

i. Write an equation for the hydrolysis of 2- bromo- 2- methylpropane.

Show organic compounds as structures.

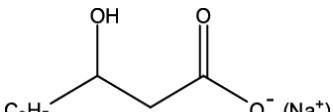
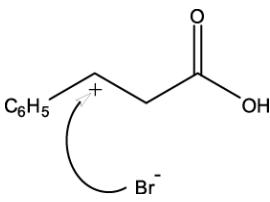
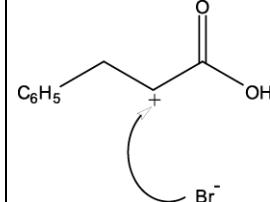
[2]

ii. A student hydrolyses a chloroalkane, RCl , a bromoalkane, RBr , and an iodoalkane, RI .

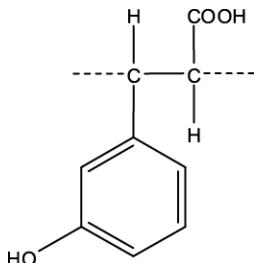
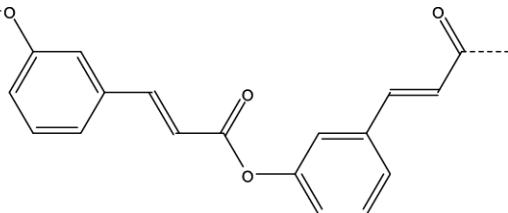
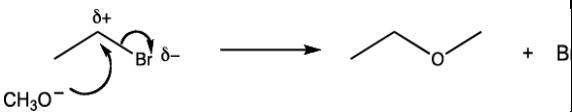
For a fair comparison, the student has chosen the same R group for each haloalkane.

Predict, with a reason, the relative rates of hydrolysis of these three haloalkanes.

[2]




Mark scheme

Question		Answer/Indicative content	Marks	Guidance
1	i	$\text{Ag}^+ + \text{Cl}^- \rightarrow \text{AgCl}$ OR $\text{Ag}^+ + \text{Br}^- \rightarrow \text{AgBr}$ OR $\text{Ag}^+ + \text{I}^- \rightarrow \text{Agl}$	1	
	ii	Bond enthalpy decreases C-CI > C-Br > C-I	1	allow chlorine–carbon bonds are strongest.
	iii	Heat the test tubes in a water bath.	1	
		Total	3	
2		D	1	
		Total	1	
3	i	<p>From Reaction 1 =</p> <p>compound B =</p>	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
	ii	<p>Curly arrow from C=C to attack the H atom</p> <p>Correct dipole on H—Cl AND curly arrow from bond to Cl</p> <p>Correct carbocation / carbonium ion with full</p>	3	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous. Curly arrow must start from covalent bonds and not atoms. DO NOT ALLOW any other partial charges e.g. shown on double bond. DO NOT ALLOW $\text{C}^{\delta+}$ for charge on carbonium ion. Curly arrow from Cl^- can start from the negative charge or the lone pair. DO NOT ALLOW delta negative, i.e. $\text{Cl}^{\delta-}$.

			positive charge shown AND correct curly arrow from negative charge of Cl^- to correct carbon atom OR correct curly arrow from lone pair of Cl^- to correct carbon atom		
		iii	because the intermediate / carbocation in the formation of compound B is less stable (than the intermediate in the formation of compound A)	1	
		iv	 (Formation of) white precipitate / solid / suspension AND (ppt is) silver chloride / AgCl	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous.
			Total	8	
4			C	1	
			Total	1	
5			B	1	
			Total	1	
6	a		Product from NH_3/ethanol Product from Reaction 1 	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW ALLOW ECF from 2-bromo compound as product from Reaction 1 DO NOT ALLOW 2-bromo compound (inconsistent with final product shown)

	<p>.....</p> <p>Product from NaOH(aq)</p> <p></p>	<p>.....</p> <p>DO NOT ALLOW ECF from 2-bromo compound as product from Reaction 1 (inconsistent with final product shown)</p>
b	<p>Curly arrow from C=C bond to H of H-Br</p> <p>Correct dipole shown on H-Br AND curly arrow showing the breaking of H-Br bond</p> <p></p> <p>.....</p> <p>Correct carbocation AND curly arrow from Br⁻ to C⁺ of carbocation</p> <p></p> <p>.....</p> <p>Electrophilic addition</p>	<p>ANNOTATE ANSWER WITH TICKS AND CROSSES</p> <p>ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous</p> <p>DO NOT ALLOW partial charges shown on C=C double bond</p> <p>DO NOT ALLOW δ+ on C of carbocation</p> <p>ALLOW formation of the 2-bromo isomer</p> <p></p> <p>Curly arrow must come from a lone pair on Br⁻ OR from the negative sign of Br⁻ ion (then lone pair on Br⁻ ion does not need to be shown)</p>

	c	i		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE <i>n</i>
		ii	 Ester link Rest of structure	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous 'End bonds' MUST be shown (do not have to be dotted)
			Total	10
7	a			1
	b	i	$2\text{Na} + 2\text{CH}_3\text{OH} \rightarrow 2\text{Na}^+ + 2\text{CH}_3\text{O}^- + \text{H}_2$ ✓	ALLOW $2\text{Na} + 2\text{CH}_3\text{OH} \rightarrow 2\text{CH}_3\text{ONa} + \text{H}_2$
		ii	 Curly arrow from CH_3O^- to carbon atom of C-Br bond ✓ Dipole shown on C-Br bond, $\text{C}^{\delta+}$ and $\text{Br}^{\delta-}$ AND curly arrow from C-Br bond to the Br atom ✓ Products of reaction (must not be ambiguous) ✓	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous. The curly arrow must start from O atom of CH_3O^- AND must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow comes from negative charge. ALLOW $\text{S}_{\text{N}}1$ Dipole shown on C-Br bond, $\text{C}^{\delta+}$ and $\text{Br}^{\delta-}$, and curly arrow from C-Br bond to the Br atom. Correct carbocation drawn. AND curly arrow from CH_3O^- to carbocation. The curly arrow must start from the oxygen atom of the CH_3O^- , and must

				start either from a lone pair or from the negative charge.																				
	iii	CH ₃ O ⁻ donates an electron pair AND heterolytic fission ✓	1	ASSUME 'it' refers to CH ₃ O ⁻																				
	c	<table border="1"> <thead> <tr> <th>Chemical shift, δ/ ppm</th> <th>Relative peak area</th> <th>Splitting pattern</th> <th></th> </tr> </thead> <tbody> <tr> <td>0.5–1.9</td> <td>3</td> <td>Triplet</td> <td>✓</td> </tr> <tr> <td>3.0–4.3</td> <td>2</td> <td>Quartet</td> <td>✓</td> </tr> <tr> <td>0.5–1.9</td> <td>6</td> <td>Doublet</td> <td>✓</td> </tr> <tr> <td>3.0–4.3</td> <td>1</td> <td>Heptet</td> <td>✓</td> </tr> </tbody> </table>	Chemical shift, δ/ ppm	Relative peak area	Splitting pattern		0.5–1.9	3	Triplet	✓	3.0–4.3	2	Quartet	✓	0.5–1.9	6	Doublet	✓	3.0–4.3	1	Heptet	✓	4	ALLOW δ values ± 0.2 ppm, as a range or a value within the range ALLOW multiplet for heptet
Chemical shift, δ/ ppm	Relative peak area	Splitting pattern																						
0.5–1.9	3	Triplet	✓																					
3.0–4.3	2	Quartet	✓																					
0.5–1.9	6	Doublet	✓																					
3.0–4.3	1	Heptet	✓																					
	d i	<p>Curly arrow from CH₃O⁻ to H of CH₂ ✓ Curly arrow from C-H bond to C of CH₂ ✓</p>	3	The curly arrow must start from O atom of CH ₃ O ⁻ AND must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow comes from negative charge.																				
	ii	CH ₃ O ⁻ accepted a proton ✓	1	ASSUME 'it' refers to CH ₃ O ⁻																				
		Total	14																					
8	a i		1	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous																				
	ii	aqueous acid OR H⁺ / H₂O	1	ALLOW H ⁺ (aq) / H ₂ SO ₄ (aq) / HCl(aq)																				

		iii	<p>Angle a = 109.5° Angle b = 104.5° Angle c = 120°</p> <p>Two correct All three correct</p>	2	<p>ALLOW 109–110° ALLOW 104–105°</p>
	b	i	<p>It is an electron pair donor OR donates a lone pair</p>	1	
		ii	<p> Curly arrow from HO^- to carbon atom of $\text{C}=\text{O}$ bond </p> <p>Correct dipole AND curly arrow from $\text{C}=\text{O}$ bond to $\text{O}^{\delta-}$</p> <p>.....</p> <p> Curly arrow from negative charge on oxygen to $\text{C}–\text{O}$ bond (to reform carbonyl π-bond) </p> <p>Curly arrow from $\text{C}–\text{O}$ single bond to oxygen atom (to form methoxide ion)</p>	4	<p>Curly arrow must come from lone pair on O of HO^- OR OH^- OR from minus sign on HO^- ion (No need to show lone pair if curly arrow came from negative charge on O)</p> <p>IGNORE dipole on $\text{C}–\text{O}$ single bond</p> <p>Curly arrow must come from lone pair on O OR from minus sign on O^- ion (No need to show lone pair if curly arrow came from negative charge on O)</p>
		iii	<p>Correct organic product:</p> <p> </p>	2	<p>ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous</p>
			Total	11	
9	a		<p>It is an electron pair donor OR can donate a lone pair ✓</p>	1	Examiner's Comments

				<p>Most candidates were able to state that the methoxide ion acted as an electron pair donor. In some cases imprecise responses such as 'donates electrons' were seen. Candidates should be encouraged to give specific answers when asked to explain scientific terms.</p>
b			3	<p>ANNOTATE ANSWER WITH TICKS AND CROSSES ETC</p> <p>IGNORE connectivity to C_3H_7 throughout</p> <p>IGNORE alkyl group in first marking point. Curly arrow must start from C–Br bond and not from C atom. Dipole must be partial charge and not full charge</p> <p>CH_3O^- curly arrow must come from one lone pair on O of CH_3O^- ion OR from negative sign on O of the CH_3O^- ion ALLOW arrow from lone pair on O in OCH_3 Lone pair not required DO NOT ALLOW CH_3O^- DO NOT ALLOW incorrect connectivity of CH_3O group in the final product $-CH_3O$ IGNORE Br^- as a product</p> <p>ALLOW S_N1 mechanism Dipole shown on the C—Br bond, C^{δ+} and Br^{δ-} and curly arrow from C—Br bond to the Br atom ✓ curly arrow from CH_3O^- to carbonium ion ✓ correct organic product ✓</p> <p>Examiner's Comments This question required candidates to apply their knowledge of the nucleophilic substitution mechanism in an unfamiliar context.</p>

				<p>The first mark was awarded for showing the dipole on the C-Br bond and the curly arrow to demonstrate the heterolytic fission of the bond. This proved to be the most accessible mark and most candidates scored it.</p> <p>The second mark was awarded for the curly arrow from the methoxide ion to the C atom of the C-Br bond. The more able candidates were able to show their understanding and provided accurately drawn arrows. A common misconception was to start the curly arrow from a lone pair on the C atom of the methoxide ion.</p> <p>The third mark was awarded for the correct organic product and was often scored by the stronger candidates. As a consequence of showing nucleophilic attack from the C atom of the CH_3O^- ion, a significant number of responses showed the incorrect connectivity, as the nucleophile was joined via the C atom rather than the O atom.</p> <p>Unfortunately a number of candidates attempted to show the mechanism using OH^- ions as the nucleophile rather than CH_3O^-. Although they were able to score the first mark no other marks were awarded.</p> <p>A very small proportion of candidates chose to show the $\text{S}_{\text{N}}1$ mechanism rather than the expected $\text{S}_{\text{N}}2$ and full credit was allowed if the response was correct.</p>
c		<p>1-iodobutane increases the rate <input checked="" type="checkbox"/></p> <p>AND</p> <p>C—I bonds are weaker (than C—Br) OR C—I bond has a lower bond enthalpy OR C—I bond needs a smaller amount of energy to break OR C—I bond is easier to break <input checked="" type="checkbox"/></p>	1	<p>All statements must be comparative ALLOW ORA IGNORE C—I bond is longer IGNORE polarity and references to electronegativity</p> <p>Examiner's Comments</p>

				Many candidates were able to predict that the rate of the reaction would increase. In addition to this the Mark Scheme required candidates to explain this by referring to the effect of the different C-halogen bond. Most candidates were able to identify that the C-I bond would be weaker. Some candidates often referred to 1-iodobutane having weaker bonds but failed to specify which bond. Other candidates referred to the reactivity of iodine and bromine.
	d	 butyl ethanoate ✓	2	<p>ALLOW only skeletal formula</p> <p>DO NOT ALLOW ECF from incorrect structure.</p> <p>ALLOW butylethanoate</p> <p>ALLOW butanyl for butyl</p> <p>DO NOT ALLOW butly</p> <p>Examiner's Comments</p> <p>This question required candidates to interpret the information and deduce that an ester would be produced. Many candidates found this challenging but the strongest candidates were able to provide a correct skeletal formula and name for the product. Common incorrect responses showed carboxylic acid structures and names.</p>
		Total	7	
10	a	 ✓	1	<p>ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above</p> <p>DO NOT ALLOW molecular formula</p> <p>ALLOW dichloro or diiodo compound instead of the dibromo compound as the only alternatives.</p> <p>Examiner's Comments</p> <p>This question required candidates to interpret the reaction scheme and</p>

			<p>suggest an intermediate compound that could be formed from 2-methylbut-2-ene that could be also hydrolysed to give the diol shown. The most able candidates demonstrated their understanding of this scheme and often suggested the correct dihalo compound. Most candidate favoured the dibromo compound however some chose to show the dichloro or diiodo compound. All of these responses received credit.</p> <p>A large proportion of structures suggested were obtainable from 2-methylbut-2-ene but could not be hydrolysed. These included the products of hydrogenation e.g. 2-methylbutane, or hydration e.g. 2-methylbutan-2-ol.</p> <p>Consequently only the most able candidates achieved a mark in part (b), as this was essentially dependant on part (a).</p>
b	Reagent A: correct halogen✓ e.g. Br ₂ / bromine	1	<p>ALLOW Cl₂ if dichloro compound drawn ALLOW I₂ if diiodo compound drawn</p> <p>IGNORE state symbols Answer must match box from (a) to score</p> <p>Examiner's Comments</p> <p>This question required candidates to interpret the reaction scheme and suggest an intermediate compound that could be formed from 2-methylbut-2-ene that could be also hydrolysed to give the diol shown. The most able candidates demonstrated their understanding of this scheme and often suggested the correct dihalo compound. Most candidate favoured the dibromo compound however some chose to show the dichloro or diiodo compound. All of these responses received credit.</p> <p>A large proportion of structures</p>

				suggested were obtainable from 2-methylbut-2-ene but could not be hydrolysed. These included the products of hydrogenation e.g. 2-methylbutane, or hydration e.g. 2-methylbutan-2-ol. Consequently only the most able candidates achieved a mark in part (b), as this was essentially dependant on part (a).
c	i	Steam AND acid catalyst ✓	1	<p>ALLOW H^+ / named acid / H_2SO_4 / H_3PO_4 ALLOW $\text{H}_2\text{O(g)}$ ALLOW water only if a temperature of 100 °C or above is quoted. IGNORE any temperature given with steam IGNORE pressure</p> <p>Examiner's Comments</p> <p>One would expect the majority of candidates to do well in a question which required them to state the reagents and conditions required for the hydration of alkenes; however this was not the case. The most able candidates provided accurate responses which referred to both steam and the acid catalyst, which was often shown to be H_3PO_4.</p> <p>Other candidates stated only one of the two required responses and it was common to see the acid catalyst stated alongside a temperature and pressure but with no reference to steam. Some candidates stated the reagent as H_2O instead of steam and this was allowed if accompanied by a temperature of over 100 °C.</p> <p>Candidates should be encouraged to learn reagents and conditions required for organic reactions.</p>
	ii	(compounds or molecules) having the same molecular formula but different structural formulae ✓	1	<p>ALLOW different structure OR different displayed formula OR different skeletal formula for structure</p>

				<p>Same formula is not sufficient Different arrangement of atoms is not sufficient</p> <p>Examiner's Comments</p> <p>The majority of candidates were able to explain the term structural isomers.</p>
	iii	<p>$\begin{array}{c} \text{CH}_3\text{CH}_3 \\ \\ \text{H}_3\text{C}-\text{C}-\text{C}-\text{H} \\ \quad \backslash \\ \text{OH} \quad \text{H} \end{array}$ ✓</p> <p>$\begin{array}{c} \text{CH}_3\text{CH}_3 \\ \\ \text{H}_3\text{C}-\text{C}-\text{C}-\text{H} \\ \backslash \quad / \\ \text{H} \quad \text{OH} \end{array}$ ✓</p>	2	<p>ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW any vertical bond to OH DO NOT ALLOW OH⁻</p> <p>Examiner's Comments</p> <p>Many candidates found this question difficult and a large number of candidates showed structures of alcohols with the molecular formula C₅H₁₂O, but that could not be formed from 2-methylbut-2-ene. Examples of these incorrect responses included 2-methylbutan-1-ol, pentan-1-ol, pentan-2-ol and pentan-3-ol. Only the most able could show the structures of both alcohols produced by the hydration of 2-methylbut-2-ene.</p> <p>Candidates should be reminded to check that any structures they suggest are consistent with the context of the question.</p>
	iv	<p>Does not contain OH group(s) OR does not contain hydroxyl group(s) OR is not an alcohol ✓</p> <p>Does not form hydrogen bonds with water ✓</p>	2	<p>ALLOW ORA throughout DO NOT ALLOW OH⁻ (ions) / hydroxide (ions)</p> <p>'Does not form hydrogen bonds' is not sufficient</p> <p>Examiner's Comments</p> <p>The majority of candidates were able to recognise that the key to the solubility of the isomers in water is that they contain the OH group whereas 2-methylbut-2-ene does not. Most candidates scored the second mark by accurately explaining that the OH group could form hydrogen bonds with water.</p>

		Total	8	
1	1	The C-Br bond is weaker (than the C-C/ bond)	1	ORA
		Total	1	
1	2	ANY TWO FROM THE FOLLOWING ✓ Low reactivity OR will not burn / non-flammable Volatile OR low boiling point non-poisonous OR non-toxic	1	ALLOW inert OR stable DO NOT ALLOW inflammable ALLOW it is a gas IGNORE easily compressed IGNORE not harmful IGNORE references to solubility Examiner's Comments Stronger candidates were able to identify two suitable properties of G . Although the majority were able state a single property it was often accompanied by a repetitive or incorrect statement. Vague statements, which included 'it is a CFC' and 'it is easily compressed' were also frequently seen.
		<i>Benefit of ozone layer to life (1 mark)</i> Ozone absorbs UV (radiation) UV at Earth's surface is reduced ✓		ANNOTATE ANSWER WITH TICKS AND CROSSES ETC For all equations, IGNORE dots on radicals
	ii	OR	5	Essential idea for first mark is that UV is removed in some way. ALLOW Prevents UV damaging life or stated type of damage, e.g. cataracts, skin cancer, mutation, crop damage DO NOT ALLOW ozone absorbs IR
		<i>Maintenance of O₃ concentration (1 mark)</i> $O_3 \rightleftharpoons O_2 + O$ ✓		ALLOW $O_3 \rightarrow O_2 + O$

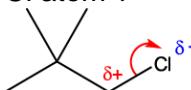
			<p>Production of radicals from G (1 mark)</p> $\text{CF}_2\text{Cl}_2 \rightarrow \text{Cl} + \text{CF}_2\text{Cl} \checkmark$		<p>AND $\text{O}_2 + \text{O} \rightarrow \text{O}_3$</p> <p>DO NOT ALLOW $2\text{O}_3 \rightleftharpoons 3\text{O}_2$ OR $\text{O}_3 + \text{O} \rightarrow 2\text{O}_2$ for this mark</p>
			<p>Breakdown of O_3 (2 marks)</p> $\text{Cl} + \text{O}_3 \rightarrow \text{ClO} + \text{O}_2 \checkmark$ <p>OR</p> $\text{ClO} + \text{O} \rightarrow \text{Cl} + \text{O}_2$ $\text{ClO} + \text{O}_3 \rightarrow \text{Cl} + 2\text{O}_2 \checkmark$		<p>DO NOT ALLOW equations with other CFCs</p> <p>DO NOT ALLOW $\text{CF}_2\text{Cl}_2 \rightarrow 2\text{Cl} + \text{CF}_2$</p>
					<p>These are the only acceptable equations</p> <p>IGNORE overall equation (<i>does not show role of catalyst</i>) e.g. $\text{O}_3 + \text{O} \rightarrow 2\text{O}_2$</p> <p>Examiner's Comments</p> <p>This question was answered very well. Almost all candidates were able to recall the benefit of the ozone layer. The equations showing the catalytic breakdown of ozone with Cl radicals were reproduced accurately by the majority of the cohort. Although most candidates were able explain how the concentration of ozone was maintained in words, the statements were not always accompanied by the relevant equations. The majority of candidates did not provide an equation to show the formation of Cl radicals from G and consequently only the strongest candidates received full marks.</p>
		iii	D \checkmark	1	<p>ALLOW CHF_2Cl ALLOW B OR C_2F_4 OR CF_2CF_2</p> <p>Examiner's Comments</p> <p>The majority of candidates suggested a suitable compound from the selection provided.</p>
			Total	7	
1 3	a	i	Movement of an electron pair \checkmark	1	<p>ALLOW movement of a lone pair OR movement of a bond</p>

			<p>Examiner's Comments</p> <p>Although the definition of a curly arrow was well known, many imprecise responses were seen. The most common was that a curly arrow represents the movement of electrons. Candidates should be aware that it is important to refer to an electron pair, when describing the meaning of a curly arrow.</p>
	ii	Electron pair donor ✓	<p>ALLOW can donate a lone pair</p> <p>Examiner's Comments</p> <p>Most candidates could state the correct definition. However, as with part (i) a significant number of candidates failed to specify 'electron pair' and stated that a nucleophile is an electron donor.</p>
			<p>ANNOTATE ANSWER WITH TICKS AND CROSSES ETC</p> <p>Curly arrow must come from lone pair on O of HO^- OR OH^- OR from minus sign on HO^- ion (No need to show lone pair if curly arrow came from negative charge on O)</p>
b	i	<p>curly arrow from HO^- to carbon atom of C–Br bond ✓</p> <p>Dipole shown on C–Br bond, $\text{C}^{\delta+}$ and $\text{Br}^{\delta-}$, AND curly arrow from C–Br bond to Br atom ✓</p>	<p>ALLOW $\text{S}_{\text{N}}1$ mechanism:</p> <p>Dipole shown on C–Br bond, $\text{C}^{\delta+}$ and $\text{Br}^{\delta-}$, AND curly arrow from C–Br bond to Br atom ✓</p> <p>Correct carbocation AND curly arrow from HO^- to carbocation Curly arrow must come from lone pair on O of HO^- OR OH^- OR from minus sign on HO^- ion (No need to show lone pair if curly arrow came from negative charge on O) ✓</p> <p>correct organic product AND Br^- ✓</p>
		<p>correct organic product AND Br^- ✓</p>	<p>correct organic product AND Br^- ✓</p>

				<p>Examiner's Comments</p> <p>This question discriminated well and most candidates were able to score at least one mark, often by showing the curly arrow and dipole on the C-Br bond. The best responses included neatly drawn structures and accurately placed curly arrows. The use of NaOH, rather than OH⁻, by a lot of candidates led to difficulties for both the first and third marking points. The latter of which was missed as candidates stated the inorganic product as NaBr and neglected to show the Br⁻ ion formed from the heterolytic fission of the C-Br bond. Candidates are advised to only show the relevant ions when drawing mechanisms.</p>
	ii	Nucleophilic substitution ✓	1	<p>Examiner's Comments</p> <p>The majority of candidates could name this mechanism as nucleophilic substitution.</p>
c	i	H ₂ AND Ni (catalyst) ✓	1	<p>ALLOW name or formula for each IGNORE any stated temperature and pressure</p> <p>Examiner's Comments</p> <p>To score the mark in this question candidates had to state that both hydrogen and nickel were required for step 1. It was often the case that only one of these was stated. Although hydrogen was often seen as a reagent it was common to see an incorrect catalyst, such as H₂SO₄.</p>

				ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
				DO NOT ALLOW any ECF in this question
				IGNORE references to temperature
				THROUGHOUT, ALLOW correct molecular formulae OR structural OR displayed OR skeletal OR mixture of the above
				IGNORE dots IGNORE state symbols
	ii		5	IGNORE one incorrect termination equation
	ii			Examiner's Comments
	ii			This question required candidates to apply their knowledge of the radical substitution mechanism to form a bromochloroalkane. Examiners were encouraged by the number of excellent attempts and it is clear that candidates had prepared well for this type of question. Consequently most candidates scored four or five marks. A common reason for a candidate only scoring four marks was the omission of UV radiation as an essential condition.
	iii		2	IGNORE mixture of organic products (<i>in question</i>)
	iii			ALLOW dichloro / multichloro / dibromo / multibromo compounds formed
	iii			OR an example of a further substitution product
	iii			OR an example of a different termination product
	iii			ALLOW more than one hydrogen (atom) can be replaced
	iii			ALLOW radicals react with each other to form other products
	iii			ALLOW forms different structural isomers
				substitution at different positions along chain ✓

					ALLOW a hydrogen (atom) on a different carbon (atom) can be replaced
					Examiner's Comments Candidates often found it difficult to provide clearly written explanations for this question. The majority of responses focused on further substitution or the idea of different termination steps. Only the best candidates recognised that chlorination of 1-bromopropane would produce a mixture of structural isomers.
			Total	14	
1 4			Propagation step 1 $\text{NO}\cdot + \text{O}_3 \rightarrow \text{NO}_2\cdot + \text{O}_2$ ✓	1	ALLOW one mark for both correct symbol equations with (any or all) dots missing or extra dots e.g. $\text{NO} + \text{O}_3 \rightarrow \text{NO}_2\cdot + \text{O}_2$ $\text{NO}_2 + \text{O} \rightarrow \text{NO} + \text{O}_2\cdot$
			Propagation step 2 $\text{NO}_2\cdot + \text{O} \rightarrow \text{NO}\cdot + \text{O}_2$ ✓	1	Examiner's Comments Many incorrect equations or correct symbol equations containing incorrect radicals were observed. A large proportion of candidates scored no marks on this question although the most able often provided both equations to gain two marks.
			Total	2	
1 5			B	1	Examiner's Comments Generally scored well.
			Total	1	
1 6			D	1	Examiner's Comments Generally scored well.
			Total	1	
1 7	i		$\text{C}_2\text{H}_5\text{O}$ ✓	1	ALLOW elements in any order DO NOT ALLOW any other answer Examiner's Comments This part was answered well by most




				<p>candidates. Some candidates however wrote the molecular rather than the empirical formula, or attempted to show the empirical formula as C_2H_4OH instead of C_2H_5O.</p>
ii	<p>Compound E:</p> <p> $\begin{array}{c} H & CH_3 \\ & \\ Br-C & -C-Br \\ & \\ H & CH_3 \end{array} \checkmark$ </p> <p>Stage 1: Compound E: Bromine/Br₂ ✓ NaOH/KOH OR OH⁻ ✓</p> <p>Stage 2: Only award if intermediate contains at least one halogen atom</p>	3		<p>For structures: ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above</p> <p>ALLOW dichloro/diiodo compound</p> <p>IGNORE connectivity of bonds to CH₃</p> <p>ALLOW chlorine/Cl₂ OR iodine/I₂ IGNORE conditions, e.g. u.v.</p> <p>DO NOT ALLOW H₂O IGNORE conditions</p> <p>NOTE: Max of 2 marks available for monobrominated intermediate</p> <p>1 mark</p> <p>Reagent: HBr AND Intermediate: CH₃C(CH₃)₂Br OR BrCH₂CH(CH₃)₂</p> <p>1 mark</p> <p>Intermediate: CH₃C(CH₃)₂Br OR BrCH₂CH(CH₃)₂</p> <p>AND Reagent: NaOH</p> <p>Examiner's Comments</p> <p>This demanding part was answered poorly by weaker candidates and was good for differentiating higher ability candidates. The mark scheme allowed some credit for using a hydrogen halide to obtain a monosubstituted haloalkane for compound E.</p>

				Surprisingly, reaction mechanism names were often given instead of reagents. Many candidates seemed to guess, sometimes showing the same reagents for both stages in the hope of getting a mark. Many showed an intermediate containing no halogen atom.
		Total	4	
1	8	i	$ \begin{array}{c} \text{Cl} \\ \\ \text{C} - \text{C} - \text{C} \\ \quad \\ \text{C} \quad \text{C} \\ \\ \text{C} \end{array} + \text{NaOH} \longrightarrow \begin{array}{c} \text{OH} \\ \\ \text{C} - \text{C} - \text{C} \\ \quad \\ \text{C} \quad \text{C} \\ \\ \text{C} \end{array} + \text{NaCl} $	<p>ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above</p> <p>ALLOW equation with OH^- as reactant and Cl^- product e.g $(\text{CH}_3)_3\text{CCH}_2\text{Cl} + \text{OH}^- \rightarrow (\text{CH}_3)_3\text{CCH}_2\text{OH} + \text{Cl}^-$</p> <p>IGNORE equations with KOH / H_2O as reactant (question states sodium hydroxide)</p> <p>IGNORE molecular formulae (question requires structures)</p> <p>Examiner's Comments</p> <p>Most candidates were able to identify the correct chloroalkane required to produce 2,2-dimethylpropan-1-ol and provided a correctly balanced equation. A small but significant proportion of candidates failed to show the inorganic product in their equation. Candidates are encouraged to check equations carefully to ensure the correct formulae appear on both sides.</p>
		ii	<p>curly arrow from HO^- to carbon atom of $\text{C}-\text{Cl}$ bond ✓</p> <p>Dipole shown on $\text{C}-\text{Cl}$ bond, $\text{C}^{\delta+}$ and $\text{Cl}^{\delta-}$</p>	<p>Curly arrow must come from lone pair on O of HO^- OR OH^- OR from minus sign on O of HO^- ion (No need to show lone pair if curly arrow came from negative charge)</p> <p>NOTE: ALLOW mechanism involving ANY halogenoalkane as structures have been assessed in (i)</p> <p>..... </p>

		AND curly arrow from C–Cl bond to Cl atom ✓		<p>ALLOW S_N1 mechanism: First mark Dipole shown on C—Cl bond, C^{δ+} and Cl^{δ-} AND curly arrow from C—Cl bond to Cl atom ✓</p> <p>Second mark Correct carbocation AND curly arrow from HO⁻ to carbocation</p> <p>Note: '+' is fine for charge (circle used for clarity)</p> <p>Curly arrow must come from lone pair on O of HO⁻ OR OH⁻ OR from minus sign on O of HO⁻ ion (No need to show lone pair if curly arrow came from negative charge) ✓</p> <p>.....</p> <p>.....</p> <p>Examiner's Comments</p> <p>The mechanism of the hydrolysis of a primary halogenoalkane was well known and consequently most candidates scored both marks. A small, but significant, proportion of candidates started their curly arrow from the H atom of the hydroxide ion. Candidates should be advised to take care when drawing mechanisms to ensure curly arrows are used accurately.</p>
		Total	3	
1 9	i	Thunderstorms / lightning AND aircraft ✓	3	<p>IGNORE car engines</p> <p>Examiner's Comments</p> <p>This question required candidates to state two sources of nitrogen oxides in the stratosphere. Whilst most candidates identified one, this was</p>

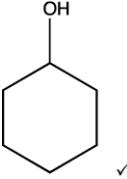
				often accompanied by vague or irrelevant statements such as 'car engines' or 'the burning of fossil fuels'. Consequently only the strongest candidates scored in this part.
	ii	NO + O ₃ → NO ₂ + O ₂ ✓ NO ₂ + O → NO + O ₂ ✓	2	<p>ALLOW NO₂ + O₃ → NO + 2O₂</p> <p>IGNORE dots</p> <p>IGNORE O + O₃ → 2O₂</p> <p>IGNORE 2O₃ → 3O₂</p> <p>Examiner's Comments</p> <p>The majority of candidates were able to provide the two equations that describe the catalytic role of NO in ozone depletion. A small but, significant proportion, of candidates provided equations involving N atoms.</p>
		Total	3	
20	a	<p>Empirical / molecular formula 3 marks Mole ratio C : H : Br is 2.44 : 5.70 : 0.814 ✓ (Empirical formula) = C₃H₇Br ✓</p> <p>QWC (Molecular formula) = C₃H₇Br AND relative mass linked to 150 evidence ✓</p> <p>Structural isomers 2 marks CH₃CH₂CH₂Br ✓ CH₃CHBrCH₃ ✓</p>	5	<p>ANNOTATE ANSWER WITH TICKS AND CROSSES</p> <p>ALLOW $\frac{29.29}{12.0} : \frac{5.70}{1.0} : \frac{65.01}{79.9}$</p> <p>Evidence could include a calculation of the relative mass of C₃H₇Br as 122.9 linking to M_r being less than 150</p> <p>ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)</p> <p>DO NOT ALLOW missing H atom(s) in a displayed formula for one structure but ALLOW missing H atoms in subsequent structure</p> <p>Note: structures from an incorrect molecular formula will be credited on their merits. Please consult TL for</p>

				advice on how to mark the subsequent parts of this question
				<p>Examiner's Comments</p> <p>Calculation of empirical formula has always been a strength of candidates at this level. Consequently the vast majority were able to deduce the structures of the two isomers correctly. A significant number of candidates failed to secure full marks as they did not link the M_r of the empirical formula with the information about the M_r of the isomers being less than 150. Some candidates tried to use the value of 150 to determine the formula of C and D, ultimately ending up with an incorrect answer. However, error carried forward marks were allowed through subsequent parts of this question where appropriate.</p>
b	i	<p>Infrared for G 2 marks</p> <p>1700 cm^{-1} AND C=O/carbonyl group ✓</p> <p>(broad) 2300–3600 cm^{-1} AND O–H in carboxylic acid ✓</p>	6	<p>ANNOTATE ANSWER WITH TICKS AND CROSSES</p> <p>LOOK ON THE SPECTRUM for labelled peaks which can be given credit</p> <p>ALLOW ranges from Data Sheet: C=O within range 1640–1750 cm^{-1}; (broad) O–H within range 2500–3300 cm^{-1}</p>
	i	<p>Structures 3 marks</p> <p>$\text{CH}_3\text{CH}_2\text{CH}_2\text{OH}$ ✓</p> <p>$\text{CH}_3\text{CHOHCH}_3$ ✓</p> <p>$\text{CH}_3\text{CH}_2\text{COOH}$ ✓</p>		<p>ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)</p> <p>ALLOW $\text{CH}_3\text{CH}_2\text{CO}_2\text{H}$ for carboxylic acid</p> <p>IGNORE names</p> <p>IGNORE labels</p> <p>DO NOT ALLOW missing H atom(s) in a displayed formula for one structure</p>

				but ALLOW missing H atoms in subsequent structures
i	Equation for formation of G 1 mark $C_3H_8O + 2[O] \rightarrow C_3H_6O_2 + H_2O \checkmark$			<p>ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above in equation</p> <p>Examiner's Comments</p> <p>Candidates were well prepared for a structural determination question and examiners were encouraged by the number of high quality of responses to this question. Most candidates were able interpret the key peaks in the IR spectrum and identified the O-H bond of a carboxylic acid and C=O bond accurately. Most candidates identified all three structures correctly. Only the strongest responses included a correct equation for the formation of G by oxidation of E. Many responses failed to include this and others often had H₂ as the inorganic product. Candidates are advised to revise oxidation reactions of alcohols thoroughly as it is often the case that incorrect equations are frequently seen in responses to exam questions.</p>
ii	2 marks for correct ester. $CH_3CH_2COOCH(CH_3)_2 \checkmark \checkmark$ Award 1 mark for: $CH_3CH_2COOCH_2CH_2CH_3$ OR Ambiguous ester: $CH_3CH_2COOC_3H_7 \checkmark$	2		<p>ANNOTATE ANSWER WITH TICKS AND CROSSES</p> <p>ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)</p> <p>ALLOW $C_2H_5CO_2CH(CH_3)_2$</p> <p>IF there is one bond and its H missing from the correct ester award 1 mark</p> <p>Examiner's Comments</p> <p>Most candidates were able to show the structure of the ester formed from propanoic acid (G and propan-2-ol (F) correctly. Some candidates used the incorrect alcohol, propan-1-ol (E) and</p>

				such responses received only one of the two marks available.
		Total	13	
2 1	a i	<p>curly arrow from HO^- to carbon atom of C - Br bond ✓</p> <p>Dipole shown on C-Br bond, $\text{C}^{\delta+}$ and $\text{Br}^{\delta-}$, AND curly arrow from C-Br bond to Br atom ✓</p>	3	<p>ANNOTATE ANSWER WITH TICKS AND CROSSES</p> <p>Curly arrow must come from lone pair on O of HO^- OR OH^- OR from minus on O of HO^- ion (no need to show lone pair if curly arrow came from negative charge)</p> <p>IGNORE alkyl group in the first marking point</p> <hr/> <p>ALLOW $\text{S}_{\text{N}}1$ mechanism</p> <p>First mark Dipole shown on C-Br bond, $\text{C}^{\delta+}$ and $\text{Br}^{\delta-}$, AND curly arrow from C-Br bond to Br atom ✓</p> <p>Second mark Correct carbocation AND curly arrow from HO^- to carbocation</p> <p>Curly arrow must come from lone pair on O of HO^- OR OH^- OR from minus on O of HO^- ion (no need to show lone pair if curly arrow came from negative charge) ✓</p> <p>Third mark correct organic product AND Br^- ✓</p> <hr/>
	ii	Nucleophilic substitution ✓	1	
	iii	<p>1-iodobutane</p> <p>AND</p>	1	<p>Note: the haloalkane could be identified by a correct structure e.g. $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{I}$</p> <p>IGNORE molecular formula</p> <p>IGNORE iodobutane (no locant)</p>

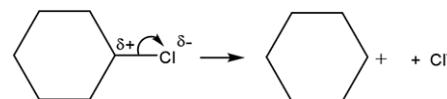
			C—I bonds are weaker (than C—Br) OR C—I bond has a lower bond enthalpy OR C—I bond needs less energy to break OR C—I bond is easier to break ✓		number) Statement must be comparative ALLOW ORA IGNORE C—I bond is longer IGNORE polarity and references to electronegativity
b	i		$\text{CF}_3\text{Cl} \rightarrow \text{CF}_3\cdot + \text{Cl}\cdot$ ✓	1	Note: dots are required
	ii		Step 1: $\text{Cl}\cdot + \text{O}_3 \rightarrow \text{ClO}\cdot + \text{O}_2$ ✓ Step 2: $\text{ClO}\cdot + \text{O} \rightarrow \text{Cl}\cdot + \text{O}_2$ ✓ Overall equation: $\text{O}_3 + \text{O} \rightarrow 2\text{O}_2$ ✓	3	ALLOW one mark for both correct symbol equations in propagation steps with (any or all) dots missing or extra dots. e.g. $\text{Cl}\cdot + \text{O}_3\cdot \rightarrow \text{ClO} + \text{O}_2$ $\text{ClO}\cdot + \text{O}\cdot \rightarrow \text{Cl} + \text{O}_2\cdot$
	iii		FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 9.98×10^4 award 3 marks $n(\text{Cl}\cdot) = \frac{1}{35.5} = 0.02817 \text{ (mol)}$ ✓ $n(\text{O}_3) = \frac{135000}{48} = 2812.5 \text{ (mol)}$ ✓ $n(\text{Cl}\cdot) : n(\text{O}_3) = \frac{2812.5}{0.02817} = 9.98 \times 10^4$ ✓ Must be in standard form AND to 3SF	3	If there is an alternative answer, check to see if there is any ECF credit possible ALLOW 0.0282 up to calculator value of 0.02816901408 correctly rounded to 3 or more sig. fig. ALLOW 3SF: 2810 up to calculator value of 2812.5 correctly rounded Note: use of 0.0282 mol Cl· gives 9.97×10^4
			Total	12	
2 2			B	1	Examiner Comments This question was answered correctly by over 90% of candidates with the most common incorrect response, silver chloride being given by those who may have named a precipitate formed in the test rather than the reagent required.
			Total	1	
2 3	i		curly arrow from CN^- to carbon atom of C—C/bond ✓ Dipole shown on C—C/bond, $\text{C}^{\delta+}$ and $\text{C}^{\delta-}$, AND curly arrow from C—C/bond to Cl atom ✓	2	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must come from lone pair on C of CN^- OR CN^- OR from minus sign on C of CN^- ion (then lone pair on CN^- does not need to be shown)


		<p>correct organic product AND Cl^- ✓</p> $\text{C}_2\text{H}_5 - \text{C} \begin{cases} \text{H} \\ \\ \text{H} \end{cases} - \text{CN}^- + \text{Cl}^- \rightarrow \text{C}_2\text{H}_5 - \text{C} \begin{cases} \text{H} \\ \\ \text{H} \end{cases} + \text{CN}^- + \text{Cl}^-$	<p>IGNORE NaCl</p> <p>ALLOW $\text{S}_{\text{N}}1$ mechanism:</p> <p>Dipole shown on C–Cl bond, $\text{C}^{\delta+}$ and $\text{Cl}^{\delta-}$, AND curly arrow from C–C/ bond to Cl atom ✓</p> <p>Correct carbocation AND curly arrow from $-\text{CN}^-$ to carbocation. Curly arrow must come from lone pair on C of $-\text{CN}^-$ OR CN^- OR from minus sign on C of $-\text{CN}^-$ ion (then lone pair on CN^- does not need to be shown) ✓</p> <p>correct organic product AND Cl^- ✓</p>
	ii	<p>Compound G</p> <p>Reagents</p> <p>Reaction 2: H_2 AND Ni ✓</p>	<p>ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous</p> <p>IGNORE name(s)</p> <p>ALLOW</p> <p>ALLOW any suitable metal catalyst e.g. Pt</p>

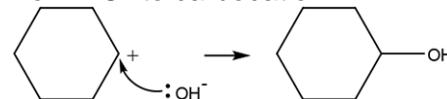
			<p>Reaction 3: Correct formula of an aqueous acid e.g. $\text{HCl(aq)}/\text{H}_2\text{SO}_4(\text{aq})$ ✓</p> <p>ALLOW LiAlH_4 for reagent in reaction 2 DO NOT ALLOW NaBH_4 for reagent in reaction 2 IGNORE names (question asks for formulae) IGNORE references to temperature and/or pressure</p> <p>ALLOW $\text{H}^+(\text{aq})$ IGNORE dilute ALLOW formula of an acid AND water</p> <p>e.g. HC AND H_2O H_2SO_4 AND H_2O</p>	<p>Examiner Comments Although many candidates were able to provide the structure of methanol as the starting material for this synthesis, the structures of chloromethanol, bromomethanol and iodomethanol were accepted as suitable alternatives. It should be noted that hydrolysis is carried out using aqueous acid and that dilute acid is not a suitable alternative.</p>
iii	<p>Explanation Nitrogen electron pair OR nitrogen lone pair AND accepts a proton / H^+✓</p> <p>Structure of salt</p> <p> $\begin{array}{c} \text{OH} \quad \text{H} \\ \quad \quad \\ \text{H} - \text{C} - \text{C}^+ - \text{NH}_3 \\ \quad \quad \\ \text{H} \quad \text{H} \end{array} \quad \text{AND } \text{Cl}^- \quad \checkmark$ </p>	2	<p>IGNORE NH_2 group donates electron pair</p> <p>ALLOW nitrogen donates an electron pair to H^+</p> <p>DO NOT ALLOW nitrogen donates lone pair to acid</p> <p>IGNORE comments about the O in the $-\text{OH}$ group</p> <p>Compound H is a base is not sufficient (role of lone pair required)</p> <p>DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton/H^+ required)</p> <p>ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous</p> <p>ALLOW</p>	

				biodegradable due to the ability of the ester functional group to undergo hydrolysis.
		Total	11	
2 4	i	 Acid (catalyst) AND heat ✓	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
	ii	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 44.4(%) award all 3 marks for calculation Amount cyclohexene (m / M) $= 1.23/82$ OR 0.0150 mol ✓	3	ALLOW (heat under) reflux ALLOW H_3PO_4 OR H_2SO_4 OR H^+ DO NOT ALLOW other named acids IGNORE concentration / pressure IGNORE water / steam
		ii Amount of bromocyclohexane (m / M) $= 5.50/162.9$ OR 0.0338 mol ✓		Examiner's Comments Candidates who were able to give the structure of the intermediate were not always able to state the conditions for the elimination of water from an alcohol. The presence of an acid catalyst and heat are stated in the specification. Some candidates confused this reaction with addition reactions of alkenes suggesting that a Ni catalyst or the presence of steam is required.
		% yield $= (0.0150/0.0338) \times 100 = 44.4(%)$ ✓		If there is an alternative answer, check to see if there is any ECF credit possible
		Final answer must be to 3 significant figures		ALLOW 3 SF: 0.0338 up to calculator value of 0.033763044 correctly rounded
				Common ECFs (2 marks) <ul style="list-style-type: none"> Incorrect $M_r \rightarrow$ incorrect moles of cyclohexene

				<ul style="list-style-type: none"> Incorrect $M_r \rightarrow$ incorrect moles of 2-bromocyclohexane <p>e.g. ALLOW two marks for use of incorrect mass of bromocyclohexane with other calculations correct e.g. $(5.50/163) = 0.033742331 \rightarrow 44.5\%$</p> <p>ALLOW calculation in mass <i>Theoretical mass yield:</i> $m(C_6H_{10}) = 0.0338 \times 82 = 2.77 \text{ g}$ $\% \text{ yield} = (1.23/2.77) \times 100 = 44.4\%$</p> <p>Examiner's Comment:</p> <p>Although some candidates simply calculated $1.23/5.50$, most followed an effective strategy for the calculation of percentage yield. Many gained full marks but a large number of candidates relied on the application of error carried forward when they made one or more careless errors during the calculation of molar mass and / or moles. Intermediate answers were sometimes rounded to 2 significant figures and marks were lost by candidates who presented their final answer to 2 or 4 significant figures.</p>
2 5	i	Reflux	5	
	ii	<p>Nucleophilic substitution (1)</p> <p><i>Mechanism</i></p> <p>Curly arrow from lone pair on OH^- to $\delta+$ carbon atom (1)</p> <p>Curly arrow and dipole on C–I bond (1)</p> <p>Correct products (1)</p>	4	<p>The curly arrow must start from the oxygen atom of the OH^- and must start from either the lone pair or the negative charge</p> <p>do not allow attack by NaOH</p>


		Total	5	
2 6		B	1	<p>Examiner's Comments</p> <p>The majority of candidates identified B (an alkene) as the compound that does not react with nucleophiles.</p>
		Total	1	
2 7		D	1	<p>Examiner's Comments</p> <p>Candidates found this multiple choice question difficult. While some correctly selected D, many candidates chose B.</p>
		Total	1	
2 8 a		<p>Links rate of reaction to strength of bond/bond enthalpy ✓ e.g. the weaker the bond the faster the reaction stronger bond takes longer to break lower bond enthalpy reacts faster</p> <p>Correct comparison of rate of reaction for at least two C–Hal bonds e.g. C–F bond is hydrolysed slowest C–I bond is hydrolysed faster than C–Br C–Br has shorter reaction time than C–Cl</p> <p>OR</p> <p>Correct comparison of C–Hal bond strength/enthalpy of at least two of C–Hal bonds e.g. C–I bond is the weakest C–I has lower bond enthalpy than C–Br C–Br is broken more easily/readily than C–Cl C–Hal bond strength decreases down group (7) ✓</p>	2	<p>Each marking point must be a comparison</p> <p>IGNORE references to halogens as elements: i.e. chlorine is less reactive than bromine etc.</p> <p>DO NOT ALLOW chloride, bromide and iodide</p> <p>IGNORE references to bond length, polarity and electronegativity</p> <p>Examiner's Comments</p> <p>This question required candidates to link the rate of hydrolysis with the strength of the carbon-halogen bond present in different haloalkanes. Higher ability candidates were able to do this succinctly, making clear comparisons between different C–X bonds. Exemplar 5 shows a commonly seen one mark response.</p> <p>Exemplar 5</p>

			<p>The bond strength of the carbon-halogen bond affects the rate of hydrolysis. The weaker the bond, the faster the rate of hydrolysis. That's because less energy is required to break the bond. [2]</p>
			<p>This response correctly describes the effect of bond strength on the rate of hydrolysis and receives one mark. To score the second mark a comparison of two different carbon-halogen bonds is required.</p>
b	<p>Curly arrow from HO^- to carbon atom of C-Cl bond ✓</p> <p>Dipole shown on C-Cl bond, $\text{C}^{\delta+}$ and $\text{Cl}^{\delta-}$ AND</p> <p>curly arrow from C-Cl bond to Cl atom ✓</p> <p></p> <p>IGNORE presence of Na^+ but OH^- needed i.e. Na^+OH^- can be allowed if criteria met</p> <p>-----</p> <p>Correct organic product AND Cl^- ✓</p> <p></p> <p>IGNORE presence of Na^+ but Cl^- needed i.e. Na^+Cl^- can be allowed BUT NaCl does NOT show Cl^-</p>	3	<p>ANNOTATE ANSWER TICKS AND CROSSES</p> <p>NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows</p> <p>1st curly arrow must</p> <ul style="list-style-type: none"> go to the C of C-Cl AND start from, OR be traced back to any point across width of lone pair on O of OH^- <p></p> <ul style="list-style-type: none"> OR start from – charge on O of OH^- ion <p></p> <p>(Lone pair NOT needed if curly arrow shown from O-) 2nd curly arrow must start from, OR be traced back to, any part of C-Cl bond and go to Cl</p> <p></p> <p>-----</p> <p>-</p> <p>ALLOW S_{N}^1 mechanism</p> <p>First mark</p> <p>Dipole shown on C-Cl bond, $\text{C}^{\delta+}$ and $\text{Cl}^{\delta-}$,</p>



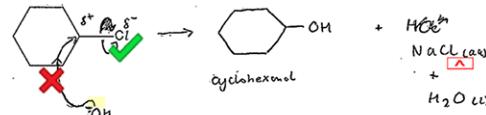
AND curly arrow from C-Cl bond to Cl atom ✓

Second mark

Correct carbocation **AND** curly arrow from HO^- to carbocation

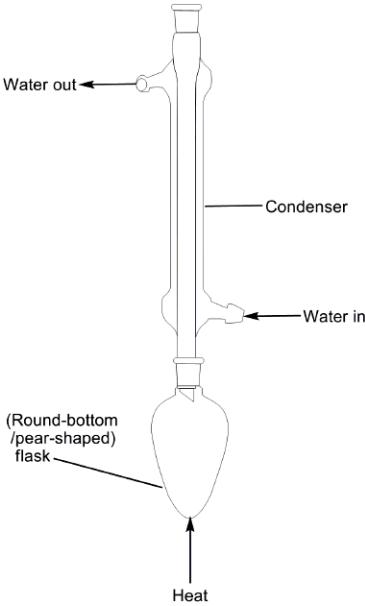
Curly arrow must come from lone pair on O of HO^- OR OH⁻

OR from minus on O of HO^- ion (no need to show lone pair if curly came from negative charge) ✓


Third mark

Correct organic product **AND** Cl^- ✓

Examiner's Comments


Candidates were very familiar with this nucleophilic substitution mechanism. Consequently the majority of candidates scored two or three marks. Common errors included inaccurate curly arrows from the hydroxide ion and failure to show the chloride ion as a product. Exemplar 6 highlights both of these.

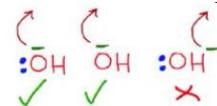
Exemplar 6

This response demonstrates the two most common errors seen in this part. The first marking point cannot be credited as the curly arrow from the hydroxide ion does not involve either the lone pair or minus sign on the O atom. The organic product is correct but the chloride ion produced by the

				<p>heterolytic fission of the C-Cl bond is not shown so marking point three cannot be credited. This response only scores one mark for the correct partial charges and curly arrow on the C-Cl bond. Candidates are encouraged to practice drawing mechanisms so as to avoid costly errors during examinations.</p>
c	i	<p>Diagram Diagram showing round bottom/pear shaped flask AND upright condenser ✓</p> <p>Labels (Round-bottom/pear-shaped) flask AND condenser AND water in at bottom and out at top AND heat (source) ✓</p>	2	<p>DO NOT ALLOW conical flask, volumetric flask, beaker in place of round bottom/pear shaped flask</p> <p>DO NOT ALLOW distillation</p> <p>DO NOT ALLOW stopper/bung on top of condenser</p> <p>IGNORE a thermometer in condenser</p> <p>IGNORE a small gap between flask and condenser</p> <p>ALLOW diagram of heating apparatus as an alternative to heat label</p> <p>Examiner's Comments</p> <p>Most candidates were able to draw a suitable diagram to show the apparatus required for reflux but some included a stopper on top of the condenser. Many of the diagrams were labelled appropriately but common errors included incorrect direction of water flow or omission of the 'flask' label. A small but significant proportion of candidates drew a diagram showing distillation.</p>

				ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		Precipitate G	1 mark	Note: working is required for first mark ALLOW use of 108 as Ar of Ag
	ii	silver bromide/AgBr AND $M = 1.88/0.01 = 188 \text{ (g mol}^{-1}\text{)}$ $188 - 107.9 = 80.1$ (so halide is Br^-) \checkmark		Note: E and F can be identified by correct name or structure BUT IGNORE incorrect names
		Alcohol F and Haloalkane E	2 marks	Examiner's Comments This question, requiring candidates to analyse the information to identify compounds E , F and G , discriminated well. Many candidates deduced that G was a silver halide but not all provided working to back up their choice of AgBr. Some candidates appeared to guess and AgCl was commonly seen. Some candidates used the molar mass of F provided to deduce the molecular formula of $\text{C}_4\text{H}_{10}\text{O}$ but lower ability responses did not process this further. Higher ability candidates identified F as butan-2-ol, showing the chiral carbon clearly. Other alcohols were also seen including butan-1-ol and methylpropan-2-ol. The highest ability candidates linked all the information and provided a structure for E that was consistent with their suggestions for F and G .
		Total	10	
2 9	i	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrows 2 marks curly arrow from OH^- to C atom of C–Br bond \checkmark	3	1st curly arrow must <ul style="list-style-type: none"> go to the C of C–Br AND start from, OR be traced back to any point across width of lone pair on O of OH^-

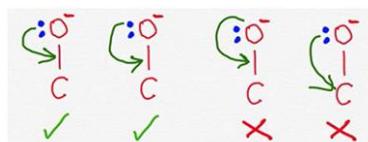
	<p>dipole shown on C–Br bond, $C^{\delta+}$ and $Br^{\delta-}$,</p> <p>AND curly arrow from C–Br bond to Br atom</p> <p></p> <p>IGNORE incorrect R groups for curly arrow marks</p> <p>IGNORE presence of Na^+/Na but OH^- needed i.e. Na^+OH^-; $NaOH^-$ can be allowed with correct use of curly arrow</p> <hr/> <p>Products 1 mark</p> <p>correct organic product AND Br^- ✓</p> <p></p> <p>IGNORE presence of Na^+ but Br^- needed</p> <p>i.e. $Na^+Br^-/NaBr^-$ can be allowed</p> <p>BUT $NaBr$ does NOT show Br^-</p> <p>NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows</p>	<ul style="list-style-type: none"> • OR start from – charge on O of OH^- ion <p></p> <p>(Lone pair NOT needed if curly arrow shown from O^-)</p> <p>2nd curly arrow must start from, OR be traced back to, any part of C–Br bond and go to Br</p> <p></p> <hr/> <p>ALLOW S_N1 mechanism for 2 curly arrow marks</p> <p>First mark Dipole shown on C–Br bond, $C^{\delta+}$ and $Br^{\delta-}$, AND curly arrow from C–Br bond to Br atom</p> <p></p> <p>Second mark Curly arrow from OH^- AND to correct carbocation</p> <p></p> <p>Use curly arrow criteria in guidance above</p> <p>Examiner's Comments</p> <p>As with 25(a)(i), this question rewarded the well-prepared candidate. The large number of proposed mechanisms showed little resemblance to the accepted mechanism for nucleophilic substitution. Mechanisms were often seen showing curly arrows going in the wrong direction and between the wrong bonds and atoms, charges and dipoles were often incorrect, and partial charges used where full charges were required.</p> <p>Two exemplars are shown. The first exemplar shows clear curly arrows, the role of the lone pair and all charges correct. The second exemplar shows a</p>
--	--	--


				<p>typical muddled response. Although the curly arrow from the hydroxide ion has been accurately drawn, the hydroxide ion has a partial charge rather than a - charge. There is also no curly arrow showing breaking of the C–Br bond. The only mark available is for the correct organic product and a Br⁻ ion.</p> <p>Some mechanisms were so poor that it was impossible to credit many candidates with any marks. Writing mechanisms is an important skill in organic chemistry and it is recommended that candidates learn and practice their writing.</p>
	ii	<p>Disappearance of peak at 500-800 cm⁻¹ OR C–Br peak ✓</p> <p>Appearance of peak at 3200-3600 cm⁻¹ OR alcohol O–H peak</p>	2	<p>ALLOW value within range 500–800 cm cm⁻¹</p> <p>ALLOW value within range 3200–3600 cm cm⁻¹</p> <p>DO NOT ALLOW responses that only describe the spectrum shown</p> <p>Examiner's Comments</p>

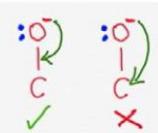
					This part discriminated very well with able candidates identifying that the absorption for the C–Br bond would disappear, with a new peak appearing for the alcohol O–H bond. A significant number of candidates did not seem to understand what was required, with many interpreting the spectrum as that of the alcohol, rather than predicting how the spectrum would change during the reaction. A common error was to interpret the absorption for a C–H bond at $\sim 3000\text{ cm}^{-1}$ as that of an O–H bond.
			Total	5	
3 0			A	1 (AO 2.5)	
			Total	1	
3 1			B	1 (AO 1.2)	<p>Examiner's Comments</p> <p>Most candidates were able to identify the functional groups correctly and selected B. Some candidates opted for A, presumably assuming the C=O at the top of the structure was a ketone. A small, but significant number of candidates chose option C.</p>
			Total	1	
3 2	i			4 (AO 3.2 x4)	<p>IGNORE any dipoles shown</p> <p>NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows</p> <p>Curly arrow from OH⁻ must</p> <ul style="list-style-type: none"> • go to the C of C=O <p>AND</p> <ul style="list-style-type: none"> • start from, OR be traced back to any point across width of lone pair on O of OH⁻ <p></p>

- OR start from – charge OH ion

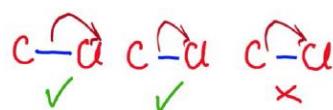
Curly arrow from C=O bond must start from, OR be traced back to, any part of C=O bond and go to O



Curly arrow from O⁻ must


- go to C=O bond

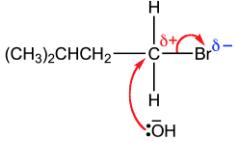
AND

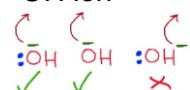
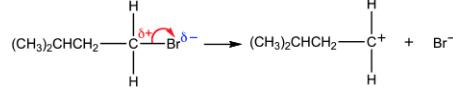
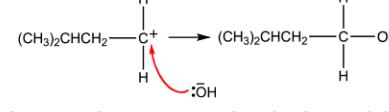
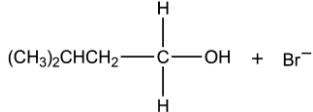

- start from, OR be traced back to, any point across width of lone pair

- OR start from ‘-‘ charge of O⁻

Curly arrow from C-Cl bond must start from, OR be traced back to, any part of C-Cl bond and go to Cl

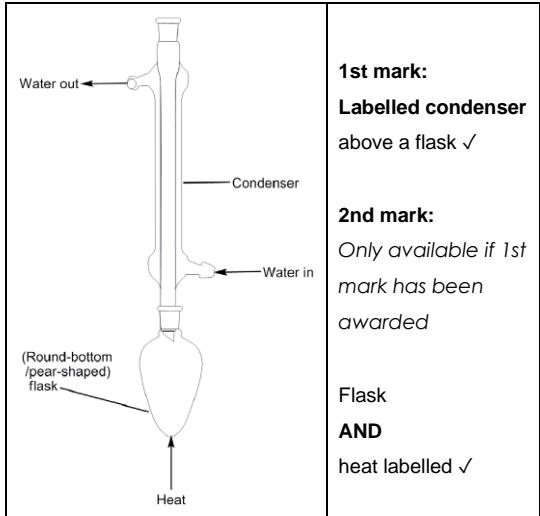
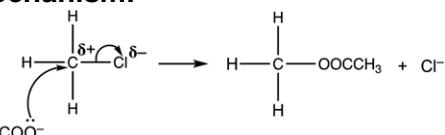
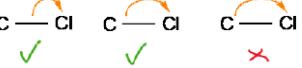
				Examiner's Comments
				Examiners were encouraged by the number of excellent responses to this question. Candidates were able to confidently apply their knowledge of mechanisms to this unfamiliar example and the majority of the cohort scored at least two marks. In the first step candidates used their understanding of nucleophilic addition to show a correct curly arrow from the hydroxide ion to the C of the C=O bond as well as an arrow from this bond to the O. Many candidates were able to show the breaking of the C-Cl bond and the formation of a chloride ion, drawing on their experience of the reactions of haloalkanes. Some candidates recognised the need to include an arrow to reform the carbon-oxygen double bond, with the best responses showing this accurately. A common error was to draw the bond from the lone pair on O to the C atom, rather than the bond.
	ii	(OH ⁻) donates an electron pair/lone pair OR (OH ⁻ acts as a) nucleophile ✓	1(AO 1.2)	
		Total	5	
3 3	i	<p>Curly arrow from HO⁻ to carbon atom of C-I bond ✓</p> <p>Dipole shown on C-I bond, C^{δ+} and I^{δ-} AND curly arrow from C-I bond to I atom ✓</p> <p>CH₃ CH CH₂ CH₂ - C - I IGNORE presence of Na⁺ but OH⁻ needed i.e. Na⁺OH⁻ can be allowed if the criteria are met</p>	3(AO2.5x 3)	<p>ANNOTATE ANSWER WITH TICKS AND CROSSES</p> <p>NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows</p> <p>1st curly arrow must</p> <ul style="list-style-type: none"> • go to the C of C-I AND • start from, OR be traced back to any point across width of lone pair on O of OH⁻



		<p>Correct organic product AND I^- ✓</p> $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\begin{array}{c} \\ \text{C} \\ \\ \text{H} \end{array}\text{OH} + \text{I}^-$ <p>IGNORE presence of Na^+ but I^- needed i.e. Na^+I^- can be allowed BUT NaI does not show I^-</p>	<ul style="list-style-type: none"> • OR start from – charge on O of OH^- ion <p>(Lone pair NOT needed if curly arrow shown from O⁻)</p> <p>2nd curly arrow must start from, OR be traced back to, any part of C–I bond and go to I</p>
	ii	<p>Time for precipitate to appear ✓</p>	<p>1(AO3.3)</p> <p>Examiner's Comments</p> <p>This candidate scored all 3 marks. The lone pair of electrons on the oxygen and partial charges on the C–I bond are clearly marked on the diagram and the arrows are precisely drawn. Connectivity is good on the organic product and I^- identified as the additional product.</p>

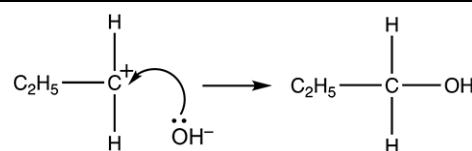
				students did not answer both parts and therefore did not gain any marks. "How fast" and "how long" were not given as they did not detail the measurement.
		iii	C–I bond is weaker (than C–Br bond) OR C–I bond has a lower bond enthalpy (than C–Br bond) ✓ Carbon – halogen bond breaks ✓	<p>For 2 marks, ALLOW C–I is broken more easily (than C–Br) as the bond is weaker</p> <p>There must be a comparison between C–Br and C–I bonds</p> <p>Examiner's Comments</p> <p>Answers were too vague to be given in most cases. Candidates referred to bonds being broken or overcome, but did not specify C–I bonds breaking, or discussed iodine and bromine in terms of reactivities.</p>
			Total	6
3 4			B	<p>Examiner's Comments</p> <p>Many candidates correctly chose B, with A being seen as the expected main distractor. Fewer than half the candidates scored this mark.</p>
			Total	1
3 5	a	i	<p>FIRST, CHECK THE ANSWER ON ANSWER LINE</p> <p>IF atom economy = 46.1(%) award 2 marks</p> <p>-----</p> <p>Atom economy $= \frac{M_r \text{ of } (\text{CH}_3)_2\text{CHCH}_2\text{CH}_2\text{OH}}{M_r \text{ of } (\text{CH}_3)_2\text{CHCH}_2\text{CH}_2\text{Br} + M_r \text{ NaOH}} \times 100$</p> <p>OR $= \frac{88}{190.9} \times 100 \checkmark$</p> <p>$= 46.1(%) \checkmark$</p>	<p>2 ALLOW $\frac{M_r \text{ of } (\text{CH}_3)_2\text{CHCH}_2\text{CH}_2\text{OH}}{M_r \text{ of } (\text{CH}_3)_2\text{CHCH}_2\text{CH}_2\text{Br} + M_r \text{ NaOH}} \times 100$</p> <p>ALLOW 46% up to calculator value (46.09743321)</p> <p>ALLOW ECF from incorrect M_r values</p> <p>Examiner's Comments</p> <p>Most candidates were able to recall the formula to calculate atom economy, however a number made errors in working out M_r values. However, some left this blank or just gave an answer without any working.</p>
		ii	<p>ANNOTATE ANSWER WITH TICKS AND CROSSES</p> <p>-----</p> <p>Curly arrows 2 marks</p>	<p>3 (AO2.5×1)</p> <p>1st curly arrow must</p> <ul style="list-style-type: none"> • go to the C of C–Br <p>AND</p>

		<p>curly arrow from OH⁻ to C atom of C–Br bond ✓</p> <p>dipole shown on C–Br bond, C^{δ+} and Br^{δ-}, AND curly arrow from C–Br bond to Br atom ✓</p> <p></p> <p>IGNORE incorrect R groups for curly arrow marks</p> <p>IGNORE presence of Na⁺ but OH⁻ needed</p> <p>i.e. Na⁺OH⁻ can be allowed if criteria met</p>	(AO1.1x1)	<ul style="list-style-type: none"> start from, OR be traced back to any point across width of lone pair on O of OH⁻ <p></p> <ul style="list-style-type: none"> OR start from – charge on O of OH⁻ ion <p></p> <p>(Lone pair NOT needed if curly arrow shown from O⁻)</p> <p>2nd curly arrow must start from, OR be traced back to, any part of C–Br bond and go to Br</p> <p></p> <hr/> <p>----- ALLOW S_N1 mechanism for 2 curly arrow marks</p> <p>First mark Dipole shown on C–Br bond, C^{δ+} and Br^{δ-}, AND curly arrow from C–Br bond to Br atom ✓</p> <p></p> <p>Second mark Curly arrow from OH⁻ AND to correct carbocation</p> <p></p> <p>Use curly arrow criteria in guidance above</p> <p>Examiner's Comments</p> <p>Mechanisms were often seen showing curly arrows going in the wrong direction and between the wrong bonds and atoms, charges and dipoles were often incorrect, and partial charges used where full charges were required. Writing mechanisms is an important skill in organic chemistry so it is vital that time is spent practising writing</p>
		<p>Products 1 mark</p> <p>correct organic product AND Br⁻ ✓</p> <p></p> <p>IGNORE presence of Na⁺ but Br⁻ needed</p> <p>i.e. Na⁺Br⁻ can be allowed</p> <p>BUT NaBr does NOT show Br⁻</p> <p>NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows</p>	(AO2.5x1)	

					them out and fully understanding the significance of the curly arrow.				
		iii	Nucleophilic substitution ✓	1 (AO1.1×1)	Examiner's Comments Many candidates gave the correct mechanism here, with common incorrect responses being other types of mechanism, substitution only, or isomerism.				
	b		Rate slower with chloroalkane ORA ✓ C–C/ bond is stronger than C–Br bond OR C–C/ bond has greater bond enthalpy OR more energy needed to break C–C/ bond ✓	2 (AO3.1×1) (AO2.5×1)	IGNORE reference to bond polarity Examiner's Comments Very few candidates gained both marks here. It was not enough here to just state faster/slower without specifying which haloalkane they were referring to. It was also important to specify the C–X bond not just vague reference to the chlorine or bromine bond. Many described the difference in bond polarity so had the wrong order. Some were more general and discussed the reactivity of bromine and chlorine themselves.				
			Total	8					
3 6			B	1 (AO2.3)					
			Total	1					
3 7			B	1 AO1.1					
			Total	1					
3 8		i	<table border="1"> <tr> <td>Alcohol C</td> <td>Reagent AND product</td> </tr> <tr> <td> $\begin{array}{c} \text{CH}_3 & \text{H} \\ & \\ \text{H}_3\text{C}—\text{C} & —\text{C}—\text{H} \\ & \\ \text{OH} & \text{H} \end{array}$ ✓ </td> <td> NaOH AND NaBr OR KOH AND KBr OR OH[–] AND Br[–] ✓ </td> </tr> </table>	Alcohol C	Reagent AND product	$ \begin{array}{c} \text{CH}_3 & \text{H} \\ & \\ \text{H}_3\text{C}—\text{C} & —\text{C}—\text{H} \\ & \\ \text{OH} & \text{H} \end{array} $ ✓	NaOH AND NaBr OR KOH AND KBr OR OH [–] AND Br [–] ✓	2 AO2.5×2	ALLOW Reagent: H ² O/water AND Product: HBr
Alcohol C	Reagent AND product								
$ \begin{array}{c} \text{CH}_3 & \text{H} \\ & \\ \text{H}_3\text{C}—\text{C} & —\text{C}—\text{H} \\ & \\ \text{OH} & \text{H} \end{array} $ ✓	NaOH AND NaBr OR KOH AND KBr OR OH [–] AND Br [–] ✓								
		ii		2 AO3.3×2	For condenser label, ALLOW 'condenser' OR water in AND water out (May be implied by connection to tap and sink).				

			<p>1st mark: Labelled condenser above a flask ✓</p> <p>2nd mark: Only available if 1st mark has been awarded</p> <p>Flask AND heat labelled ✓</p>	
			Total 4	
3 9			C 1 (AO1.2)	
			Total 1	
4 0			A 1 (AO1.2)	
			Total 1	
4 1			<p>Formation of C• $\text{CCl}_3 \rightarrow \text{CCl}_3 \cdot + \text{Cl} \cdot \checkmark$</p> <p>Breakdown of O₃ $\text{Cl} \cdot + \text{O}_3 \rightarrow \cdot\text{ClO} + \text{O}_2 \checkmark$</p> <p>$\cdot\text{ClO} + \text{O} \rightarrow \text{Cl} \cdot + \text{O}_2 \checkmark$</p>	<p>IGNORE dots for formation C•, i.e. ALLOW $\text{CCl}_3 \rightarrow \text{CCl}_3 + \text{Cl}$</p> <p>DO NOT ALLOW ECF Dots required in this equation</p> <p>IGNORE $\text{O} + \text{O}_3 \rightarrow 2\text{O}_2$ ALLOW 1 mark if both equations are correct by atom but dot(s) missing or incorrect</p>
			Total 3	
4 2			<p>Mechanism:</p> <p>NOTE: Can be any C–X bond, e.g. C–Cl, C–Br, C–I but must be consistent.</p> <p>Curly arrow on C–X Dipole shown on C–X bond of CH_3X, $\text{C}^{\delta+}$ and $\text{X}^{\delta-}$ AND curly arrow from C–X bond to X atom ✓</p> <p>Curly arrow from CH_3COO^-</p>	<p>ANNOTATE ANSWER TICKS AND CROSSES</p> <p>-----</p> <p>NOTE: Curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows</p> <p>1st curly arrow must start from, OR be traced back to, any part of C–Cl bond and go to Cl</p> <p>2nd curly arrow must</p>


		<p>Curly arrow from CH_3COO^- to C atom of C–X bond ✓</p> <hr/> <p>Products Correct organic product AND X^- ✓</p>	<ul style="list-style-type: none"> go to the C of C–Cl <p>AND</p> <ul style="list-style-type: none"> start from, OR be traced back to any point across width of lone pair on O of CH_3COO^- <div style="text-align: center;"> </div> <ul style="list-style-type: none"> OR start from ‘–’ on O of CH_3COO^- ion <div style="text-align: center;"> <p>(Lone pair NOT needed if curly arrow from O-)</p> <hr/> </div> <hr/> <p>If CH_3COOH used instead of CH_3COO^-,</p> <p>ALLOW X^- OR HX as 2nd product ALLOW $\text{S}_{\text{N}}1$ mechanism</p> <p>First mark Dipole shown on C–Cl bond, $\text{C}^{\delta+}$ and $\text{Cl}^{\delta-}$, AND curly arrow from C–Cl bond to Cl atom ✓</p> <div style="text-align: center;"> </div> <p>Second mark Correct carbocation AND curly arrow from CH_3COO^- to carbocation</p> <div style="text-align: center;"> </div> <p>Curly arrow must be from lone pair on O of CH_3COO^- OR from minus on O of CH_3COO^- ion (no need to show lone pair if curly came from – charge) ✓</p> <p>Third mark Correct organic product AND Cl^- ✓</p>
--	--	--	---

					Examiner's Comments
					<p>Candidates were required to apply their knowledge of nucleophilic substitution of haloalkanes to outline a similar mechanism for an unfamiliar nucleophile.</p> <p>Most candidates were able to show a correct curly arrow for breaking the C–X bond, with a dipole shown. The role of the unfamiliar ethanoate ion proved to be much more difficult, with curly arrows not starting from either a lone pair or the – charge. A mark was given for the correct products but the halide ion was often omitted.</p> <p>This question discriminated extremely well. Higher-attaining candidates provided clear mechanisms and were commonly given all 3 marks. Many candidates could not work out where to start, beyond breaking the C–X bond. It was common to see reactants and products with the wrong number of carbon atoms, and the structure of ethyl methanoate instead of methyl ethanoate being shown as the product.</p> <p>When confronted with a question set in a novel context, candidates are advised to apply knowledge and understanding from reactions that they have studied – here the reaction of a haloalkane with a OH– ion.</p>
		Total	3		
4 3		B	1(AO1.1)	Examiner's Comments	<p>Most candidates selected the correct option, B. The main distractors were A (confusing which C–X bond is stronger) and C (confusing which effect of bond strength and polarity is dominant for this reaction).</p>
		Total	1		
4 4		Curly arrow from HO– to C atom of C-Cl bond ✓	3 (AO1.2) (AO1.2)	ANNOTATE ANSWER WITH TICKS AND	

	<p>Dipole shown on C-Cl bond, $C^{\delta+}$ and $Cl^{\delta-}$ AND curly arrow from C-Cl bond to Cl atom ✓</p> <p>or</p> <p></p> <p>IGNORE presence of Na^+ but OH^- needed i.e. Na^+OH^- can be allowed if criteria met DO NOT ALLOW H_2O instead of OH^- Correct organic product AND Cl^- ✓</p> <p>or</p> <p></p> <p>IGNORE presence of Na^+ but Cl^- needed i.e. Na^+Cl^- can be allowed BUT $NaCl$ does NOT show Cl^-</p>	<p>(AO2.5 x1)</p> <p>CROSSES</p> <p>NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows</p> <p>1st curly arrow must</p> <ul style="list-style-type: none"> • go to C of C-Cl <p>AND</p> <ul style="list-style-type: none"> • start from, OR be traced back to any point <p>Cl across width of lone pair on O of OH^-</p> <p></p> <ul style="list-style-type: none"> • OR start from - charge on O of OH^- ion <p></p> <p>(Lone pair NOT needed if curly arrow shown from O^-)</p> <p>2nd curly arrow must start from, OR be traced back to, any part of C-Cl bond and go to Cl^-</p> <p></p> <p>ALLOW ECF $NaCl$ ONLY from $NaOH^-$ ALLOW S_N1 mechanism</p> <p>First mark</p> <p>Dipole shown on C-Cl bond, $C^{\delta+}$ and $Cl^{\delta-}$, AND curly arrow from C-Cl bond to Cl atom ✓</p> <p></p> <p>Second mark</p> <p>Correct carbocation AND curly arrow from HO^- to carbocation</p>
--	--	---

Curly arrow must come from lone pair on O of HO^-

OR OH^-

OR from minus on O of HO^- ion (no need to show lone pair if curly came from negative charge) ✓

Third mark

Correct organic product **AND** Cl^- ✓

Examiner's Comments

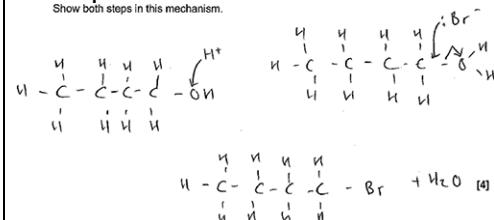
Although a simpler mechanism than electrophilic addition in Question 21 (a) (ii), candidate responses here were less successful. Many candidates weren't able to identify the OH^- ion attacking the carbon atom and the curly arrow often did not originate from an O lone pair or the negative charge. Candidates often omitted the dipole on the C–Cl bond or did not include a curly arrow. Candidates were expected to show both the resulting alcohol and Cl^- as products. Many tried to incorporate Na into their organic structure. Organic mechanisms are a key concept in organic chemistry and it is essential for candidates to learn all the mechanisms in preparation for examinations.

Assessment for learning

Reactions mechanisms are the organic chemist's way of communicating electron transfers in organic chemistry. It is essential that curly arrows, dipoles and charges are used appropriately and accurately. AS Chemistry includes three important reaction mechanisms: electrophilic addition, nucleophilic substitution and radical substitution. This paper includes two of these in

				Questions 21 (a) (i) and 26 (a). It is essential that candidates learn these three mechanism types.
		Total	3	
4 5		B	1 (AO1.1)	<p>Examiner's Comments</p> <p>The majority of candidates identified B as the correct answer.</p>
		Total	1	
4 6		B	1 (AO1.1)	<p>Examiner's Comments</p> <p>Candidates found this multiple choice question challenging. While some identified B as the correct answer, many candidates selected C.</p>
		Total	1	
4 7		A	1 (AO1.1)	<p>Examiner's Comments</p> <p>Many candidates did not identify CH_3NH_2 as a nucleophile and selected option B.</p>
		Total	1	
4 8		<p>Level 3 (5–6 marks) Describes, in detail, reactions of two aliphatic compounds that form a C–C bond AND mechanisms for the two aliphatic reactions.</p> <p><i>There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.</i></p> <p>Level 2 (3–4 marks) Describes a reaction of one aliphatic compound that forms a C–C bond with few omissions/errors. AND mechanism for one aliphatic reaction. OR Describes reactions of two compounds</p>	6 (AO1.2×4) (AO2.5×2)	<p>Indicative scientific points may include:</p> <p>Reactions of aliphatic compounds and mechanisms</p> <ul style="list-style-type: none"> • Haloalkane, RX and $\text{CN}^- \rightarrow \text{RCN} + \text{X}^-$ <p>Reagents: NaCN and ethanol</p> <p>Reaction: Nucleophilic substitution</p> <p>Mechanism:</p>

	<p>that forms a C–C bond AND attempts a mechanism for one of the reactions</p> <p><i>There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.</i></p> <p>Level 1 (1–2 marks) Selects suitable reagents for reactions of two compounds that form a C–C bond. OR Attempts to describe a reaction and mechanism of one compound that forms a C–C bond, with omissions/errors.</p> <p><i>There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.</i></p> <p>0 marks No response or no response worthy of credit.</p>	<p></p> <ul style="list-style-type: none"> Aldehyde or ketone and HCN <p>e.g. $\text{RCHO} + \text{HCN} \rightarrow \text{RCH}(\text{OH})\text{CN}$</p> <p>Reagents: NaCN and H^+</p> <p>Reaction: Nucleophilic addition</p> <p>Mechanism:</p> <p></p> <p>OR H_2O instead of H^+ for 2nd stage</p> <p>If alternative reactions are shown contact your TL e.g. radical substitution, polymerisation</p> <p><u>Examiner's Comments</u></p> <p>This question differentiated well. Candidates who were given Level 3 (5–6 marks) understood the term aliphatic and were able to provide two different mechanisms that produced a C–C bond. The most common responses seen involved the nucleophilic substitution of a halogenoalkane and a cyanide ion and the nucleophilic addition of a carbonyl with a cyanide ion. Some candidates offered radical</p>
--	---	--


				substitution mechanisms, detailing initiation, propagation and termination steps, with the termination step producing a C-C bond. Candidates who scored Level 2 (3-4 marks) frequently detailed a reaction involving aromatic compounds or polymerisation of alkenes for which they were unable to give a mechanism.
		Total	6	
4 9		<p>Step 1 The oxygen atom of the alcohol group accepts a proton to form a positively-charged intermediate.</p> <p style="text-align: center;">2 marks</p> <p> $\begin{array}{c} \text{H} & \text{Curly arrow} \checkmark \\ & \\ \text{C}_3\text{H}_7 - \text{C} - \text{OH} & \text{H}^+ \\ & \\ \text{H} & \text{H} \\ & \longrightarrow \end{array} \begin{array}{c} \text{H} \\ \\ \text{C}_3\text{H}_7 - \text{C} - \text{OH}_2^+ \\ \\ \text{H} \\ \text{Intermediate} \checkmark \end{array}$ </p> <p>Step 2 Bromide ions react with the intermediate by nucleophilic substitution to form 1-bromobutane.</p> <p style="text-align: center;">2 marks</p> <p>2 possible routes: EITHER</p> <p> $\begin{array}{c} \text{H} & \text{Curly arrow} \checkmark \\ & \\ \text{C}_3\text{H}_7 - \text{C} - \text{OH}_2^+ & \longrightarrow \boxed{1\text{-bromobutane}} \\ \text{Curly arrow} \checkmark & \text{Br}^- \\ & \\ \text{H} & \text{H} \end{array}$ </p> <p>OR</p> <p> $\begin{array}{c} \text{H} & \text{Curly arrow} \checkmark \\ & \\ \text{C}_3\text{H}_7 - \text{C} - \text{OH}_2^+ & \longrightarrow \text{C}_3\text{H}_7 - \text{C}^+ \\ & \\ \text{H} & \text{H} \\ \text{Curly arrow} \checkmark & \text{Br}^- \\ & \\ \text{H} & \text{H} \end{array} \begin{array}{c} \text{H} & \text{Curly arrow} \checkmark \\ & \\ \text{C}_3\text{H}_7 - \text{C}^+ & \longrightarrow \boxed{1\text{-bromobutane}} \\ & \\ \text{H} & \text{H} \end{array}$ </p>	<p>ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous For $\text{CH}_3\text{CH}_2\text{CH}_2$, ALLOW $\text{CH}_3(\text{CH}_2)_2$, C_3H_7 IGNORE dipoles</p> <hr/> <p>ALLOW curly arrow to H of $\text{H-O-SO}_3\text{H}$ OR H-Br IGNORE absence of curly arrow from H-O or from H-Br + charge MUST be on O of intermediate Curly arrow must</p> <ul style="list-style-type: none"> start from, OR be traced back to any point across width of lone pair on :Br^- OR :OH OR start from - charge on Br^- <p>(Lone pair NOT needed if curly arrow shown from - charge on Br^-) IGNORE final products: 1-bromobutane and H_2O IF $\text{C}_3\text{H}_2\text{CH}_2\text{-O}^+\text{H}_2$ is not shown, ALLOW intermediate mark for carbocation: $\text{C}_3\text{H}_2\text{CH}_2^+$ ALLOW 2 marks max for mechanism without positively charge intermediate, i.e.</p> <p> $\begin{array}{c} \text{H} & \text{Curly arrow} \checkmark \\ & \\ \text{C}_3\text{H}_7 - \text{C} - \text{OH} & \longrightarrow \boxed{1\text{-bromobutane}} \\ & \\ \text{H} & \text{H} \\ \text{Br}^- & \end{array}$ </p> <p>If in doubt, contact Team Leader</p> <p>Examiner's Comments</p>	

This question is one of two on this paper assessing understanding of unfamiliar organic reaction mechanisms. The stem to the question includes important information and clues that should have then guided candidates towards this unfamiliar mechanism (which is related to the familiar nucleophilic substitution of haloalkanes). The two prompts for Step 1 and Step 2 are critical but many candidates did not use these, instead inventing their own mechanisms. However, there were many successful responses seen that gained the full 4 marks.

Exemplar 2

Example 2

Exemplar 2 illustrates a limited appreciation of what curly arrows mean and the importance of charges and dipoles. Step 1 is an attempt to show the alcohol OH group accepting a proton, but a curly arrow shows the movement of an electron pair. It cannot travel from a + charge to a lone pair. The intermediate shown does contain the correct atoms but the + charge has been omitted from the O atom.

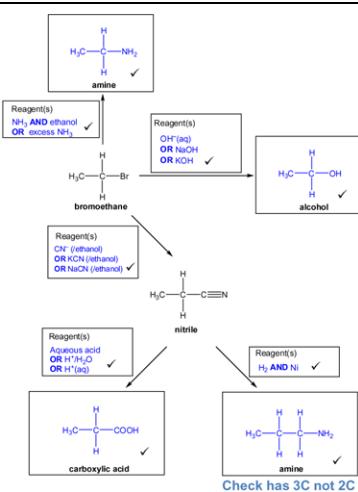
Marks were given for the curly arrow from the Br⁻ lone pair and from the C-O bond. However, the candidate has drawn the bonds with very short lines making it all too easy for a curly arrow to be shown imprecisely. This response was given 2/4 marks.

Assessment for learning

In organic chemistry mechanisms, a curly arrow shows the movement of an electron pair and demonstrates the

				direction of electron flow in organic reactions.
				A curly arrow must start from: <ul style="list-style-type: none"> • A lone pair or negative charge and go to an atom to show where a bond forms • A bond to show where a bond breaks.
				In Q3b, curly arrows start <ul style="list-style-type: none"> • from a lone pair on the alcohol OH and a Br⁻ ion • from a C-O bond
				A curly arrow will not originate from a + charge.
		Total	4	
5 0	a	<p>Mechanism</p> <p>Curly arrow from OH⁻ to C atom of C-Br bond in 2-bromopropane ✓</p> <p>Dipole shown on C-Br bond, C^{δ+} and Br^{δ-}, AND curly arrow from C-Br bond to Br atom ✓</p> <p></p> <p>Name</p> <p>nucleophilic substitution ✓</p> <p>NOTE: Curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows</p>	3 (AO 1.2) (AO 2.1) (AO 1.1)	<p>1st curly arrow must</p> <ul style="list-style-type: none"> • go to the C of C-Br AND • start from, OR be traced back to any point across width of lone pair on O of OH⁻ <p></p> <ul style="list-style-type: none"> • OR start from – charge on O of OH⁻ ion <p></p> <p>(Lone pair NOT needed if curly arrow shown from O⁻)</p> <p>2nd curly arrow must start from, OR be traced back to, any part of C-Br bond and go to Br</p> <p></p> <p>ALLOW S_N1 mechanism for 2 curly arrow marks First mark</p>

					Dipole shown on C–Br bond, C ^{δ+} and Br ^{δ-} , AND curly arrow from C–Br bond to Br atom ✓
	b	i		2 (AO 1.1 x 2)	<p>Second mark Curly arrow from OH⁻ AND to correct carbocation ✓</p> <p>Curly arrow must come from lone pair on O of HO⁻ OR OH⁻ OR from minus on O of HO⁻ ion (no need to show lone pair if curly came from negative charge) ✓</p> <p>Examiner's Comments</p> <p>Just under half the candidates gained all 3 marks for this mechanism. Marks were often lost for incorrect positioning or a missing arrow for the breaking of the C–Br bond. Dipoles were often added to the hydroxide ions. Some also showed the lone pair for OH⁻ going to the C–Br bond and not to the C^{δ+}.</p> <p>A range of spellings of nucleophilic were seen, including: nucleophilic, nucleophilic, nucleophilic, and nucleophilic. It is important to promote good literacy in science, including meanings and spellings of technical language.</p>


Haloalkane	Formula	Colour
2-bromopropane	AgBr	cream
2-iodopropane	AgI	yellow

		Formula AND colour required for each mark		haloalkane or formulae involving a halogen and a nitrate ion.
	ii	<p>AgI OR yellow (precipitate forms first)</p> <p>AND</p> <p>C–I bond is weaker (than C–Br bond) ✓</p>	1 (AO2.3)	<p>ALLOW (precipitate from) 2-iodopropane</p> <p>ALLOW ECF from incorrect formula or colour ppt from 3(d)(ii)</p> <p>ALLOW C–I bond has a lower bond enthalpy OR C–I bond is longer</p> <p>ORA</p> <p>IGNORE references to bond length, polarity and electronegativity</p> <p>Examiner's Comments</p> <p>Most responses did not gain credit here. Some recognised that AgI would form first but then gave an incorrect reason (such as 'held by weaker London forces') or their answers lacked detail (e.g., 'weaker bonds' without specifying which bonds). Many said AgBr because Br is more reactive or more electronegative.</p>
		Total	6	
5 1		D	1 (AO 2.7)	<p>Examiner's Comments</p> <p>Candidates find it difficult to identify an intermediate within a synthesis and less than half selected the correct option, D.</p>
		Total	1	
5 2		D	1	<p>Examiner's Comments</p> <p>Most correctly identified the colour of the precipitate as yellow, D. The most common incorrect response was brown, A, possibly linking to the colour of iodine.</p>
		Total	1	

5 3	A	1	<p>Examiner's Comments</p> <p>Most candidates gave the incorrect response D as their answer. Ultraviolet radiation does cause bonds in CFC molecules to break, and candidates may have been influenced by Question 8. However it is not a valid scientific reason for global warming. It suggests candidates may be confused about global warming verses the depletion of the ozone layer. This question was looking for candidates to link global warming to infrared active molecules i.e. C-H bond in methane. Just under a fifth of candidates gave the correct answer A.</p> <p> Misconception</p> <p>Many candidates believed there was a link between ultraviolet radiation and global warming. This is a topical issue so can be explored by looking at a range of resources including current news reports or exploring the United Nations resources.</p>
	Total	1	
5 4	C	1	<p>Examiner's Comments</p> <p>Most candidates correctly identified C as the correct initiation step forming a chlorine radical. A few gave B which forms an $\cdot\text{F}$ radical instead. It is always good to discuss the reason why the C-C/bond will break but C-F won't in the presence of ultraviolet light.</p>
	Total	1	
5 5		9	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous

DO NOT ALLOW structure if H(s) are missing from **ONE** structural/displayed formula...

BUT ALLOW any further omissions as ECF

ALLOW any vertical bond to the OH OR NH_2

DO NOT ALLOW OH^- , OR NH_2^- but **ALLOW ECF** for subsequent use in this part

ALLOW names of reagents e.g. ethanolic ammonia, if no formulae given

DO NOT ALLOW other additional reagents

IGNORE Conditions

For bromoethane to amine:

IF a secondary / tertiary amine is given **ALLOW** one mark for a correct structure **AND** one mark for an appropriate reagent to produce the amine shown.

For bromoethane to alcohol:

ALLOW H_2O

IGNORE ethanol (as a solvent)

For bromoethane to nitrile:

DO NOT ALLOW HCN OR CN^- / H^+
DO NOT ALLOW H_2O / (aq)

For nitrile to carboxylic acid:

ALLOW any mineral acid

IGNORE dilute/concentrated

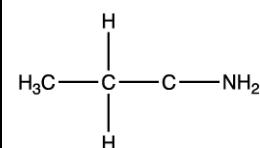
For nitrile to amine:

ALLOW suitable non-specification alternative e.g. LiAlH_4 , H_2 with Pd or Pt

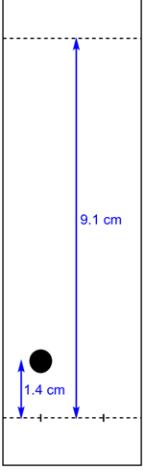
Examiner's Comments

This question was well-answered with around a half of candidates scoring 8

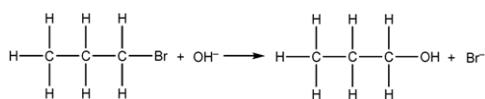
or 9 marks. The full range of marks was seen across the whole cohort. The most common reasons for losing marks were for the addition of extra, contradictory reagents or for missing hydrogens from structures.


Bromoethane to amine: The amine structure was mostly correct with a few adding an extra hydrogen to the amine i.e. $\text{CH}_3\text{CH}_2\text{NH}_3$. Most gave the correct reagent as NH_3 but some omitted either ethanol or excess, so did not score here.

Bromoethane to alcohol: The alcohol structure was usually correct. However, many lost the reagent mark here for the addition of acid/ $\text{H}^+/\text{H}_2\text{SO}_4$ alongside the hydroxide.



Bromoethane to nitrile: A suitable cyanide was often used, but again many included an acid catalyst or aqueous conditions (aq) so lost the mark here. Ideally candidates would react in ethanol to prevent hydrolysis of the haloalkane.


Nitrile to carboxylic acid: Most gave the correct carboxylic acid structure, while occasionally ethanoic acid was given instead of propanoic acid. Most identified the need for acid as a reagent but some omitted water or (aq).

Nitrile to amine: H_2 was often seen as the reagent but sometimes without a catalyst. Many gave an incorrect structure here either with a missing C (i.e. ethylamine) or missing hydrogens on the first carbon i.e.

				OCR support A useful resource for teaching about organic synthetic routes including functional groups, reagents and two-step processes can be found in the Topic Exploration pack on Teach Cambridge.
		Total	9	
5 6	i	$R_f \sim \frac{1.4}{9.1}$ in cm OR $\frac{14}{91}$ in mm = 0.15 ✓ Working required Check for ~ 9.1 as denominator	1	ALLOW 0.12 - 0.18 (i.e. ± 0.03) DO NOT ALLOW $\frac{1.4}{10.1} = 0.14$ 10.1 measured from bottom of plate to solvent front
	ii	 	1	Examiner's Comments Candidates are well versed with calculating an R_f value, with nearly all candidates obtaining a value in the acceptable range of 0.12-0.18.

Correct balanced equation

ALLOW OH- above the arrow

ALLOW any combination of skeletal **OR** structural **OR** displayed formula as long as unambiguous

DO NOT ALLOW Missing H atoms

DO NOT ALLOW H_2O and HBr

		<p>DO NOT ALLOW if a CON reagent is present, e.g. an acid</p> <p>For OH⁻ and Br⁻ ALLOW KOH and KBr OR NaOH and NaBr BUT DO NOT ALLOW K-OH <i>implies covalent bond</i></p>		<p>Question asks for alkaline hydrolysis</p> <p>DO NOT ALLOW C₃H₇, i.e. C₃H₇Br OR C₃H₇OH</p> <p>Structure asked for in Question</p> <p>IGNORE connectivity, e.g.</p> <p>ALLOW OH</p> <p>BUT DO NOT ALLOW —HO</p> <p>Examiner's Comments</p> <p>This question was answered well by candidates, with most showing correct structures for the organic reactant and its product, propan-1-ol, and skeletal formulae mostly used.</p> <p>The question asked for an equation for alkaline hydrolysis and candidates were expected to use an alkali. Acceptable answers would include NaOH/KOH and NaBr/KBr, or OH⁻ and Br⁻. Equations including H₂O and HBr were not given a mark, a common error for alkaline hydrolysis.</p>
iii		<p>Difference</p> <p>propan-1-ol/product/bottom spot is smaller</p> <p>OR 1-chloropropane/reactant/top spot bigger ✓</p> <p>Reasons</p> <p>propan-1-ol/product/bottom spot is smaller</p> <p>C-Cl bond is stronger than C-Br</p> <p>AND</p>	3	<p>FULL ANNOTATIONS MUST BE USED</p> <p>ALLOW ECF and ORA throughout</p> <hr/> <p>IGNORE references to halogens as elements: i.e. chlorine is less reactive than bromine etc.</p> <p>DO NOT ALLOW chloride, bromide</p> <p>DO NOT ALLOW 1-chloropropane has larger bond enthalpy C-Cl bond required</p> <p>IGNORE 1-chloropropane has different R_f value</p> <p>IGNORE 'as a control' OR 'as a</p>

		<p>1-chloropropane reacts slower/is less reactive ✓</p> <p>Use of propan-1-ol</p> <p>shows formation of propan-1-ol</p> <p>OR shows when reaction has finished</p> <p>OR monitors course/progress of reaction ✓</p>		<p>comparison' with no further explanation</p> <p>Examiner's Comments</p> <p>This novel question assessed whether candidates realised why chemists used TLC when carrying out organic reactions.</p> <p>A good response would identify the following key features after 20 minutes:</p> <ul style="list-style-type: none"> • The C-C/ bond energy is greater than C-Br and so the reaction would be slower. • The haloalkane spot would be larger and the propan-1-ol spot smaller. • The propan-1-ol is spotted on the chromatogram to monitor the progress of the reaction. <p>The question differentiated very well between candidates, but many did not seem to know where to start with many candidates not scoring any marks. This suggested that candidates recognised chromatography as a technique but did not appreciate its relevance in organic chemistry. Some candidates referred to pigments, recalling their early chromatography experiments in finding the colours in ink.</p>
5 7	i	<p>Total</p> <p>$\begin{array}{c} \text{H}_3\text{C} \\ \\ \text{C} \\ \\ \text{H}_3\text{C} \end{array} \text{Br} + \text{OH}^- \rightarrow \begin{array}{c} \text{H}_3\text{C} \\ \\ \text{C} \\ \\ \text{H}_3\text{C} \end{array} \text{OH} + \text{Br}^-$</p> <p>Structure of BOTH organic compounds ✓</p> <p>DO NOT ALLOW if H(s) are missing</p> <p>OH⁻ on left AND Br⁻ on right ✓</p> <p>ALLOW NaOH/KOH with NaBr/KBr</p>	5	<p>ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous</p> <p>IGNORE state symbols</p> <p>ALLOW OH⁻ AND Br⁻ in a balanced mechanism</p> <p>ALLOW OH⁻ over the arrow for LHS of equation</p> <p>DO NOT ALLOW unbalanced charges, e.g. OH⁻ with Br</p> <p>DO NOT ALLOW H₂O AND HBr</p>

					rate. Only the most successful candidates related a correct order of reactivity to the different strengths of the carbon–halogen bond.
			Total	4	