Bond Enthalpy Questions

Bond Enthalpy Calculations

Energetics Worksheet

Practice Questions

Mean Bond Dissociation Enthalpy (ΔHdissθ) / kJ mol-1
C-C: 348 C=C: 612 C-H: 412 O=O: 498 O-H: 464
C=O: 740 C-O: 347 H-F: 562 C-H (alkyne): 460 C≡C: 837
S-F: 309 Xe-Xe: 0 F-F: 158 H-H: 436 Br-Br: 193
S=O: 452
1. Define the term mean bond dissociation enthalpy.

The bond dissociation enthalpy is the enthalpy change when breaking one mole of a particular bond to give separated atoms – everything being in the gas state.

2. State which bond is strongest in each pair, and explain why that is the case.
a) C-C; C=C

C=C is stronger due to having a sigma bond and a pi bond.

b) C-Cl; C-Br

C-Cl is stronger than C-Br because Cl has fewer shells than Br. This results in a shorter bond length and therefore stronger electrostatic force of attraction.

3. Calculate the standard enthalpy change of combustion of butanol.
C4H9OH + 6O2 4CO2 + 5H2O
Bond Enthalpy Calc Q3
Bonds Broken (Reactants)
3(C-C) + 9(C-H) + 1(C-O) + 1(O-H) + 6(O=O)
3(348) + 9(412) + 347 + 464 + 6(498) = +8551 kJ
Bonds Formed (Products)
8(C=O) + 10(O-H)
8(740) + 10(464) = -10560 kJ
Answer
+8551 – 10560 = -2009 kJ mol-1
4. Propose the products of the reaction between hydrogen fluoride and ethyne (C2H2). The enthalpy change of this reaction is -179kJmol-1. Calculate the bond dissociation enthalpy of C-F.
C2H2 + 2HF CH3CHF2
Bond Enthalpy Calc Q4
Equation
ΔH = Σ(Bonds Broken) – Σ(Bonds Formed)
-179 = [1(C≡C) + 2(H-F) + 2(C-H)] – [1(C-C) + 2(C-F) + 4(C-H)]
Substitution
-179 = [837 + 2(562) + 2(412)] – [348 + 2x + 4(412)]
-179 = [2785] – [1996 + 2x]
Answer
2x = 2785 – 1996 + 179 = 968
x = 484 kJ mol-1
5. Calculate the bond enthalpy of Xe-F given that when one mole of Xenon releases 52kJmol-1 when it reacts with excess F2.
Xe + 2F2 XeF4
Bond Enthalpy Calc Q5
Calculation
ΔH = ΣBroken – ΣFormed
-52 = [2(F-F)] – [4(Xe-F)]
-52 = [2(158)] – 4x
Answer
4x = 316 + 52 = 368
x = 92 kJ mol-1
6. Calculate the bond dissociation energy of C-Br given that the enthalpy change of the reaction between ethene and bromine is -64kJmol-1.
C2H4 + Br2 C2H4Br2
Bond Enthalpy Calc Q6
Calculation
-64 = [1(C=C) + 1(Br-Br)] – [1(C-C) + 2(C-Br)]
-64 = [612 + 193] – [348 + 2x]
Answer
-64 = 805 – 348 – 2x
2x = 457 + 64 = 521
x = 260.5 kJ mol-1
7. Calculate the bond strength of the S-O bond in sulfuric acid using the enthalpy change of -195kJmol-1 for the reaction between sulfur hexafluoride and water to producing sulfuric acid and hydrogen fluoride.
SF6 + 4H2O H2SO4 + 6HF
Bond Enthalpy Calc Q7
Calculation
-195 = [6(S-F) + 8(O-H)] – [2(S=O) + 2x + 2(O-H) + 6(H-F)]
-195 = [6(309) + 8(464)] – [2(452) + 2x + 2(464) + 6(562)]
-195 = 5566 – [5204 + 2x]
Answer
-195 = 362 – 2x
2x = 557
x = 278.5 kJ mol-1
8. Calculate the Standard Enthalpy of Combustion (ΔHcθ) of Benzene (C6H6). You cannot calculate this directly using mean bond enthalpies for benzene because of its delocalized ring structure. Instead, you must use a Square Hess Cycle linking benzene to Cyclohexane, Gaseous Atoms, and Combustion Products.

Data Provided:
Enthalpy of Hydrogenation of Benzene:
C6H6(l) + 3H2(g) → C6H12(l)    ΔHhydro = -208 kJ mol-1
ΔHhydro = -208 C6H6 + 3H2 + 9O2 C6H12 + 9O2 6C + 12H + 18O (Atoms) 6CO2 + 6H2O +11514 (Break) -14448 (Form) ΔHc(Benzene) + 3ΔHc(H2)
Step 1: Calculate ΔHc(Cyclohexane)
Reaction: C6H12 + 9O2 → 6CO2 + 6H2O
Break: 6(348) + 12(412) + 9(498) = 11514 kJ
Form: 12(740) + 12(464) = 14448 kJ
ΔHc(Cyclo) = 11514 – 14448 = -2934 kJ mol-1
Step 2: Calculate ΔHc(Hydrogen)
Reaction: H2 + 0.5O2 → H2O
Break: 436 + 0.5(498) = 685 kJ
Form: 2(464) = 928 kJ
ΔHc(H2) = 685 – 928 = -243 kJ mol-1
Step 3: Hess’s Law Calculation
Path 1 = Path 2
ΔHc(Benzene) + 3ΔHc(H2) = ΔHhydro + ΔHc(Cyclo)
ΔHc(Benzene) + 3(-243) = -208 + (-2934)
ΔHc(Benzene) – 729 = -3142
ΔHc(Benzene) = -3142 + 729 = -2413 kJ mol-1