Bond Enthalpy Calculations
Energetics Worksheet
Practice Questions
| Mean Bond Dissociation Enthalpy (ΔHdissθ) / kJ mol-1 | ||||
|---|---|---|---|---|
| C-C: 348 | C=C: 612 | C-H: 412 | O=O: 498 | O-H: 464 |
| C=O: 740 | C-O: 347 | H-F: 562 | C-H (alkyne): 460 | C≡C: 837 |
| S-F: 309 | Xe-Xe: 0 | F-F: 158 | H-H: 436 | Br-Br: 193 |
| S=O: 452 | ||||
1.
Define the term mean bond dissociation enthalpy.
The bond dissociation enthalpy is the enthalpy change when breaking one mole of a particular bond to give separated atoms – everything being in the gas state.
2. State which bond is strongest in each pair, and explain why that is the case.
a) C-C; C=C
C=C is stronger due to having a sigma bond and a pi bond.
b) C-Cl; C-Br
C-Cl is stronger than C-Br because Cl has fewer shells than Br. This results in a shorter bond length and therefore stronger electrostatic force of attraction.
3.
Calculate the standard enthalpy change of combustion of butanol.
C4H9OH + 6O2
→
4CO2 + 5H2O
Bonds Broken (Reactants)
3(C-C) + 9(C-H) + 1(C-O) + 1(O-H) + 6(O=O)
3(348) + 9(412) + 347 + 464 + 6(498) = +8551 kJ
3(348) + 9(412) + 347 + 464 + 6(498) = +8551 kJ
Bonds Formed (Products)
8(C=O) + 10(O-H)
8(740) + 10(464) = -10560 kJ
8(740) + 10(464) = -10560 kJ
Answer
+8551 – 10560 = -2009 kJ mol-1
4.
Propose the products of the reaction between hydrogen fluoride and ethyne (C2H2). The enthalpy change of this reaction is -179kJmol-1. Calculate the bond dissociation enthalpy of C-F.
C2H2 + 2HF
→
CH3CHF2
Equation
ΔH = Σ(Bonds Broken) – Σ(Bonds Formed)
-179 = [1(C≡C) + 2(H-F) + 2(C-H)] – [1(C-C) + 2(C-F) + 4(C-H)]
-179 = [1(C≡C) + 2(H-F) + 2(C-H)] – [1(C-C) + 2(C-F) + 4(C-H)]
Substitution
-179 = [837 + 2(562) + 2(412)] – [348 + 2x + 4(412)]
-179 = [2785] – [1996 + 2x]
-179 = [2785] – [1996 + 2x]
Answer
2x = 2785 – 1996 + 179 = 968
x = 484 kJ mol-1
x = 484 kJ mol-1
5.
Calculate the bond enthalpy of Xe-F given that when one mole of Xenon releases 52kJmol-1 when it reacts with excess F2.
Xe + 2F2
→
XeF4
Calculation
ΔH = ΣBroken – ΣFormed
-52 = [2(F-F)] – [4(Xe-F)]
-52 = [2(158)] – 4x
-52 = [2(F-F)] – [4(Xe-F)]
-52 = [2(158)] – 4x
Answer
4x = 316 + 52 = 368
x = 92 kJ mol-1
x = 92 kJ mol-1
6.
Calculate the bond dissociation energy of C-Br given that the enthalpy change of the reaction between ethene and bromine is -64kJmol-1.
C2H4 + Br2
→
C2H4Br2
Calculation
-64 = [1(C=C) + 1(Br-Br)] – [1(C-C) + 2(C-Br)]
-64 = [612 + 193] – [348 + 2x]
-64 = [612 + 193] – [348 + 2x]
Answer
-64 = 805 – 348 – 2x
2x = 457 + 64 = 521
x = 260.5 kJ mol-1
2x = 457 + 64 = 521
x = 260.5 kJ mol-1
7.
Calculate the bond strength of the S-O bond in sulfuric acid using the enthalpy change of -195kJmol-1 for the reaction between sulfur hexafluoride and water to producing sulfuric acid and hydrogen fluoride.
SF6 + 4H2O
→
H2SO4 + 6HF
Calculation
-195 = [6(S-F) + 8(O-H)] – [2(S=O) + 2x + 2(O-H) + 6(H-F)]
-195 = [6(309) + 8(464)] – [2(452) + 2x + 2(464) + 6(562)]
-195 = 5566 – [5204 + 2x]
-195 = [6(309) + 8(464)] – [2(452) + 2x + 2(464) + 6(562)]
-195 = 5566 – [5204 + 2x]
Answer
-195 = 362 – 2x
2x = 557
x = 278.5 kJ mol-1
2x = 557
x = 278.5 kJ mol-1
8.
Calculate the Standard Enthalpy of Combustion (ΔHcθ) of Benzene (C6H6). You cannot calculate this directly using mean bond enthalpies for benzene because of its delocalized ring structure. Instead, you must use a Square Hess Cycle linking benzene to Cyclohexane, Gaseous Atoms, and Combustion Products.
Data Provided:
Enthalpy of Hydrogenation of Benzene:
C6H6(l) + 3H2(g) → C6H12(l) ΔHhydro = -208 kJ mol-1
Data Provided:
Enthalpy of Hydrogenation of Benzene:
C6H6(l) + 3H2(g) → C6H12(l) ΔHhydro = -208 kJ mol-1
Step 1: Calculate ΔHc(Cyclohexane)
Reaction: C6H12 + 9O2 → 6CO2 + 6H2O
Break: 6(348) + 12(412) + 9(498) = 11514 kJ
Form: 12(740) + 12(464) = 14448 kJ
ΔHc(Cyclo) = 11514 – 14448 = -2934 kJ mol-1
Break: 6(348) + 12(412) + 9(498) = 11514 kJ
Form: 12(740) + 12(464) = 14448 kJ
ΔHc(Cyclo) = 11514 – 14448 = -2934 kJ mol-1
Step 2: Calculate ΔHc(Hydrogen)
Reaction: H2 + 0.5O2 → H2O
Break: 436 + 0.5(498) = 685 kJ
Form: 2(464) = 928 kJ
ΔHc(H2) = 685 – 928 = -243 kJ mol-1
Break: 436 + 0.5(498) = 685 kJ
Form: 2(464) = 928 kJ
ΔHc(H2) = 685 – 928 = -243 kJ mol-1
Step 3: Hess’s Law Calculation
Path 1 = Path 2
ΔHc(Benzene) + 3ΔHc(H2) = ΔHhydro + ΔHc(Cyclo)
ΔHc(Benzene) + 3(-243) = -208 + (-2934)
ΔHc(Benzene) – 729 = -3142
ΔHc(Benzene) = -3142 + 729 = -2413 kJ mol-1
ΔHc(Benzene) + 3ΔHc(H2) = ΔHhydro + ΔHc(Cyclo)
ΔHc(Benzene) + 3(-243) = -208 + (-2934)
ΔHc(Benzene) – 729 = -3142
ΔHc(Benzene) = -3142 + 729 = -2413 kJ mol-1